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Part 2: Regularizing the estimates: labeling optimization 
(40 mins)

• Local labeling optimization
– Local data aggregation and cost volume filtering, PAMI 2013
– PatchMatch Filter, CVPR 2013

• Global labeling optimization
– PatchMatch Belief Propagation, IJCV 2014
– Sped-up PatchMatch Belief Propagation, ICCV 2015
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MRF-based global labeling optimization

• Elegant formulation as Markov random fields

• Slow even with efficient energy minimization algorithms
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MRF-based global labeling optimization
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General Formulation - Recap
• Find the label ݈௣ for each pixel ݌, for instance, by minimizing the 

following objective  consisting of the data fidelity ܧ௣ and the prior 
term ܧ௣௤

Evaluating matching evidences with 
local image descriptors or matching 
similarity measures 

Enforcing the spatial smoothness constraint

݈∗ = ݃ݎܽ min
௟

ܽ
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General Formulation: Local vs. Global?
• Local approaches 

– Using the data fidelity term only
– Typically, aggregating the data 

cost with Edge-Aware Filtering 
(EAF)

Cost Volume Filtering, CVPR 2012
PatchMatch Filter, CVPR 2013

• Global approaches 
– Using both the data fidelity and 

prior terms 
– Optionally, aggregating the data 

cost with edge-aware filtering for 
stronger performance

|ܹ| = 1, No cost aggregation

Belief Propagation, IJCV 2006
PatchMatch Belief Propagation, IJCV 2014
Sped-up PatchMatch Belief Propagation, ICCV 2015
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[Petschnigg et al. SIGGRAPHY04] [Eisemann et al. SIGGRAPHY04]

• Based on cross/joint (bilateral) filtering principles

Efficient Edge-Aware Filtering (EAF) 
as a fast alternative to global labeling optimization
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PMF (PATCH-MATCH FILTER)

• J. Lu, H. Yang, D. Min*, and M. N. Do, ‘PatchMatch Filter: Efficient Edge-Aware Filtering Meets Randomized Search for Fast
Correspondence Field Estimation (CVPR), 2013. (oral presentation, acceptance rate < 4.0%, *: corresponding author)
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Edge-Aware Filtering for Discrete Labeling Optimization

• Labeling: assigning a label for all pixels (e.g. depth, motion)

Left image Right image

ܪ

ܹܮ

ܹ

ܪ

ܮ : Search range

Window ࡹ

Examples of label maps Applications using depth/motion
- View synthesis for 3DTV
- Frame up-conversion (30 60fps)
- 3D scene reconstruction
- Scene understanding
- 3D video editing

Depth map

Motion map
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ܮ : Search range

Left image Right image

ܹ

ܪ

࢒ = ૙ ࢒ = ࡸ − ૚࢒ = ૚࢒ = ૛ ܪ

ܹ

ܮ

Edge-Aware Filtering for Discrete Labeling Optimization

Data cost 
calculation

JOINT Edge-Aware Filtering
for each slice of (࢒)࡯

3D cost volume (࢒)࡯

Reference pixel
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[Yoon & Kweon,PAMI06], [Rhemann et al.,CVPR11]

• Based on cross/joint (bilateral) filtering principles
• Cost volume filtering – repeated cross/joint filtering
• Runtime is often independent of the filter kernel size m

஼௢௦௧ݐݑ݌ݐݑܱ = ,ݎ݋݈݋ܥ)۴ۯ۳ (஼௢௦௧݅݊ܫ
While a label 
݈ = 0 → ܮ − 1

Edge-Aware Filtering for Discrete Labeling Optimization
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Edge-Aware Filtering for Discrete Labeling Optimization

Simple WTA
݀ ݌ = ݃ݎܽ min

௟
(݈)ሚ௣ܥ

[Yoon & Kweon,PAMI06], [Rhemann et al.,CVPR11]
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Fast Cost-Volume Filtering for Visual Correspondence and Beyond
(CVPR 2011, PAMI 2013)

• Reducing computational cost in terms of ܯ
– By using O(1) time edge-aware filtering (EAF): Guided Filter (GF) 

(ࡸࡹࡵ)ࡻ (ࡸࡵ)ࡻ

filter size, L: label size :ܯ ,(ܹ×ܪ) image size :ܫ

ܪ

ܹ
ܮ

ܯ
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But, the curse of the label search space

O(I*L) !!

Also said for recent filter-based mean-field inference for random fields [Vineet et al. ECCV12]
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The label space can be HUGE

• Two-dimensional motion search
• Displacement in subpixel accuracy
• Over-parameterized surface or motion modeling
• …

• e.g. motion search range in [-40, 40]*[-40, 40] * 8 * 8 →
ࡸ = ૝૚૙, ૙૙૙ labels! → ૝૚૙, ૙૙૙ joint filtering!
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The label space can be HUGE

• Two-dimensional motion search
• Displacement in subpixel accuracy
• Over-parameterized surface or motion modeling
• …

• e.g. motion search range in [-40, 40]*[-40, 40] * 8 * 8 →
ࡸ = ૝૚૙, ૙૙૙ labels! → ૝૚૙, ૙૙૙ joint filtering!

Too slow to stop at every floor 
O(I*L) !!
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• Find for every patch in A the nearest 
neighbor in B under a patch distance metric
• Iterative propagation & random search

O(I*M*logL) !!

[Barnes et al., SIGGRAPH09, 
ECCV10]

filter size, L: label size :ܯ ,(ܹ×ܪ) image size :ܫ

PatchMatch for Approximate Nearest-Neighbor Field 
(ANNF)
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PatchMatch for Local Labeling Optimization

1 10 37 80

59 20 75 95

72 41 28 50

55 30 92 62

1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized 
at pixel ݌ with label ݈

௧ܦ ݌ : Label map at tth iteration of pixel ݌
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PatchMatch for Local Labeling Optimization

1 10 37 80

59 20 75 95

72 41 28 50

55 30 92 62

1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized 
at pixel ݌ with label ݈

௧ܦ ݌ : Label map at tth iteration of pixel ݌

15 20 35 73

51 30 75 95

72 41 28 50

55 30 92 62

2. Propagation

(݌)௧ܦ = arg min
௔∈ {ଷହ,ଷ଴,଻ହ}

ܧ ,݌ ܽ
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PatchMatch for Local Labeling Optimization
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59 20 75 95

72 41 28 50

55 30 92 62

1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized 
at pixel ݌ with label ݈

௧ܦ ݌ : Label map at tth iteration of pixel ݌

15 20 35 73

51 30 75 95

72 41 28 50

55 30 92 62

2. Propagation

(݌)௧ܦ = arg min
௔∈ {ଷହ,ଷ଴,଻ହ}

ܧ ,݌ ܽ

30



20

PatchMatch for Local Labeling Optimization
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72 41 28 50
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1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized 
at pixel ݌ with label ݈

௧ܦ ݌ : Label map at tth iteration of pixel ݌

15 20 35 73

51 30 75 95

72 41 28 50

55 30 92 62

2. Propagation

(݌)௧ܦ = arg min
௔∈ {ଷହ,ଷ଴,଻ହ}

ܧ ,݌ ܽ

30

15 20 35 73

51 30 30 95

72 41 28 50

55 30 92 62

3. Random Search

௧ܦ ݌ = arg min
௔∈஺

ܧ ,݌ ܽ

ܣ = 30 +
ܴ
2௜ |݅ = 1, … , ܯ

60
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PatchMatch for Local Labeling Optimization
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1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized 
at pixel ݌ with label ݈
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௔∈஺

ܧ ,݌ ܽ

ܣ = 30 +
ܴ
2௜ |݅ = 1, … , ܯ

60

Repeat ࢀ times!

3. Random Search
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PatchMatch for Local Labeling Optimization
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[Bleyer et al., BMVC11]
PatchMatch stereo

[Min et al., ICCV11]

Histogram-based 
prefiltering

O(I*M*logL) !!

O(I*M*L/s) !!

filter size, L: label size :ܯ ,(ܹ×ܪ) image size :ܫ

Related work dealing with the huge label space
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But, the cost is still huge: New approach?

• Computational complexity of local labeling optimization

– Brute force approach: (ࡸࡹࡵ)ࡻ

– CostFilter (CVPR 2011, PAMI 2013): ࡻ ࡸࡵ

– PatchMatch (SIGGRAPH 2009, ECCV 2010): ࡻ ࡸࢍ࢕࢒ࡹࡵ

– Histogram-based prefiltering (ICCV 2011): ࡻ(ࡸࡹࡵ/૚૙)
 ,filter size :ܯ ,(ܹ×ܪ) image size :ܫ
L: label size

ܪ

ܹ
ܮ

ܯ
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Our goal is to find a bridge to
enjoy high “throughput” !!

Photo courtesy: www.pamitc.org/cvpr13/attending.php

EAF
O(I*L)

PatchMatch
O(I*M*logL)

PatchMatch Filter
O(I*logL)
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• Significantly different objectives
• Disparate computation pattern
• Disparate memory access pattern

VsEAF: Highly regular and 
deterministic computing

PM: Random and 
fragmented data access

Meeting the two is never easy
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Random Access on Label Space Makes Problem DIFFICULT

• Pixel-wise randomized search of original PatchMatch
– Fragmental data access on 3D cost volume

3D cost volume

ܪ

ܹܮ

,ݔ) ,ݕ ݀ଵ)

Matching window for 
aggregation (nonlinear filtering)

ݔ) + 1, ,ݕ ݀ଶ) This random access hinders the 
application of efficient ܱ(1) filtering 
technique
- ݀ଵ for (ݔ, (ݕ and ݀ଶ for (ݔ + 1, (ݕ

(ࡸࢍ࢕࢒ࡹࡵ)ࡻ
filter size, L: label size :ܯ ,(ܹ×ܪ) image size :ܫ
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(૚)ࡻ filtering needs redundancy!

• Redundancy of simultaneously computing a weighted 
sum for all pixels 
– Guided filter (ECCV 2010, PAMI 2013): Multiple number of 

integral sum (box filtering)
– Recursive filter of Domain Transform method (SIGGRAPH 

2011): Recursive propagation of aggregated data in causal 
and non-causal manners

– (૚)ࡻ Bilateral Filter on bilateral grid (ECCV 2006): Linear 
Gaussian filtering on high dimensional volume

The filtered data of       
should be reused for filtering 
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We did it: Ours (f) runs 10x faster than 
CostFilter (e), with even higher accuracy
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PatchMatch Filter (PMF)
• Super-pixel based randomized search algorithm

– Collaborative filtering within a single super-pixel 

• Efficient filtering + PatchMatch algorithm
– Collaborative randomized search 

(ࡸࡵ)ࡻ +(ࡸࢍ࢕࢒ࡹࡵ)ࡻ (ࡸࢍ࢕࢒ࡵ)ࡻ

Processing unit 
for filtering

 ,filter size :ܯ ,(ܹ×ܪ) image size :ܫ
L: label size

ܪ

ܹ
ܮ

ܯ
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Segments as the bridge
• Labeling solutions are spatially smooth and discontinuities-aligned
 Collaborative label search and propagation
 Extends the propagation range

• The efficiency of EAF comes from high computational redundancy 
for shared computation reuse

[Achanta et al. PAMI12]

Note)
A simple method, dividing an image 
into non-overlapped rectangular 
blocks, is also possible!
 But, this makes the algorithm 
being converged much slower!
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Baseline PMF algorithm: General recipe
1. Initial label assignment to each segment
2. Process each segment in scan order iteratively

– For the current segment, evaluate the candidate labels generated from 
two sources: propagation & random search

Raw cost 
computation 

for subimages

Cost 
aggregation for  

subimages

WTA for 
bounding-

boxes

Neighborhood 
propagation Random search

Plausible labels

Label producer

Consumer

Note that the cost aggregation (filtering) is done for each segment
the label decision (WTA) is done for each pixel
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A list records the labels 
visited for each segment S(k),  
so NO subimage filtering for 
any revisited label.

Random search & evaluation
Note that the filtering is done for each segment, 
but the label decision is done for each pixel
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Complexity Comparison

• Computational complexity of local labeling optimization

– Brute force approach: (ࡸࡹࡵ)ࡻ

– CostFilter (CVPR 2011, PAMI 2013): ࡻ ࡸࡵ

– PatchMatch (SIGGRAPH 2009, ECCV 2010): ࡻ ࡸࢍ࢕࢒ࡹࡵ

– Histogram-based prefiltering (ICCV 2011): ࡻ(ࡸࡹࡵ/૚૙)

– PatchMatch Filter (ours): (ࡸࢍ࢕࢒ࡵ)ࡻ

 ,filter size :ܯ ,(ܹ×ܪ) image size :ܫ
L: label size

ܪ

ܹ
ܮ

ܯ
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PMF for Stereo – Slanted surface handling

• Label: for each pixel p, find a 3D plane 

Image courtesy of [Bleyer et al., BMVC11]



37

PMF for Stereo – Slanted surface handling

• Label: for each pixel p, find a 3D plane 
• Hypothetical correspondence location (q, q’)

• Raw matching cost

• PMF-based cost aggregation
• Post processing

– Cross-checking, plane extrapolation for unreliable pixels, 
weighted median filter
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PMF for Optical flow

• Label: for each pixel p, find a disp. vector
• For sub-pixel accurate flow, upscaling (u,v)-dim. by 8
• Hypothetical correspondence location (q, q’=q+(u,v))
• Raw matching cost

• PMF-based cost aggregation
• Post processing

– Cross-checking, iterative weighted median filter, smoothing
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Convergence and time-accuracy trade-off



40
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Guided Filter (GF) and 
Cross-based Local Multipoint Filtering (CLMF)

* Both O(1)-time algorithms 
with leading EAF performance

* CLMF-0 is 2-3x faster than 
GF, CLMF-1 gives better quality 

[He et al. ECCV10]

[Lu et al. CVPR12]
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Middlebury stereo benchmark evaluation

• Improvement of PMF due to implicit regularization by segment-based propagation
• PMF does not sacrifice the matching accuracy (compared to the original PatchMatch), 

for improving the runtime efficiency!
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• PMF-C runs over 3-7x faster for high-res. stereo images 
(e.g. 1M pixels) than CostFilter

• PMF-S over 10x faster than PatchMatch Stereo[7]
• In any case, w/ CLMF-0 runs 2-3x than w/ GF
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Our PMF

CostFilter [Rhemann et al.,CVPR11]
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Middlebury optical flow evaluation
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Middlebury optical flow evaluation

• PMF gives an order of magnitude runtime speedup
• PMF runs even over 30x faster than CostFilter[17] on the same PC
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SPM-BP (SPED-UP PATCHMATCH
BELIEF PROPAGATION)

• Y. Li, D. Min*, M. S. Brown, M. N. Do, and J. Lu, ‘SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs,’ IEEE Int. Conf.
on Computer Vision (ICCV), Dec. 2015. (oral presentation, acceptance rate < 4.0%, *: corresponding author)
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Discrete Pixel-Labeling Optimization on MRF

• Many computer vision tasks can be formulated as a
pixel-labeling problem on Markov Random Field (MRF)

pixel, ௣ܰ: 4 neighbors :݌

 Simple: data term + smoothness term
 Effective: labeling coherence, discontinuity handling
 Optimization: Graph Cut, Belief Propagation, etc

Optical flow
l = (u,v)

Segmentation 
l={B,G}

Denoising
l = intensity

Stereo 
l = d
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Belief Propagation (BP)

Iterative process in which 
neighbouring nodes “talk” 
to each other:
– Update message between 

neighboring pixels

– Stop after T iterations, decide 
the final label by picking the 
smallest dis-belief

1
݉ଶ,ଵ

(௧)
2

5

4

3

݉ସ,ଶ
(௧ିଵ)

݉ହ,ଶ
(௧ିଵ)

݉ଷ,ଶ
(௧ିଵ)

ଶܧ

2

5

4 1

3

݉ଵ,ଶ
்

݉ସ,ଶ
்

݉ହ,ଶ
்

݉ଷ,ଶ
்

ଶܧ

 Challenge: 
When the label set L is huge or densely sampled, BP faces 
prohibitively high computational challenges.
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Particle Belief Propagation (PBP)

[Ihler and McAllester, “Particle Belief Propagation,” AISTATS’09]

– Solution: 
(1)  only store messages for K labels (particles)

l (discrete label)

l

(2) generate new  label particles with the MCMC sampling using 
a Gaussian proposal distribution

Challenge: 
MCMC sampling is still inefficient and slow for continuous 
label spaces (e.g. stereo with slanted surfaces).
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Patch Match Belief Propagation (PMBP)

2

5

4 1

3

[Besse et al, “PMBP: PatchMatch Belief Propagation for 
Correspondence Field Estimation,” IJCV 2014]
• Solution: 
Use Patch Match[Barnes et al. Siggraph’09]’s sampling algorithm –
augment PBP with label samples from the neighbours as proposals

• Orders of magnitude faster than PBP
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• Effectively handles large label spaces in message passing
• Successfully applied to stereo with slanted surface modeling

[Bleyer et al., BMVC’11]
Label: 3D plane normal ݈ = (ܽ௣, ܾ௣, ܿ௣)

Patch Match Belief Propagation (PMBP)

Left image Disparity map 3D reconstruction

• Also successfully applied to optical flow [Hornáček et al., ECCV’14]

Disparity map 3D reconstruction

݈ = (ݎ݁݃݁ݐ݊݅) ݀ ݈ = (ܽ௣, ܾ௣, ܿ௣)

Image courtesy of [Bleyer et al., BMVC’11]
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Problem of PMBP

• However, it suffers from a heavy computational load
on the data cost computation

• Many works strongly suggest to gather stronger 
evidence from a local window for the data term

Left view Right view Weight Raw matching cost

lp
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Optical Flow

Er
ro

r

w

Stereo

Er
ro

r

w

Data term is important!

• Better results with larger window sizes (2w+1)^2, but more 
computational cost!

w = 0

w = 4
w = 20

w = 0

w = 4

w = 20
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Aggregated data cost computation
• Cross/joint/bilateral filtering principles

• Local discrete labeling approaches have often used efficient 
O(1)-time edge-aware filtering (EAF) methods [Rhemann et al., 
CVPR’11].
– O(1)-time: No dependency on window size used in EAF

Guided Filter [He et al. ECCV 2010] Cross-based Local Multipoint Filtering 
(CLMF) [Lu et al. CVPR 2012] 
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Why does PMBP NOT use O(1) time EAF?

• Particle sampling and data cost computation are performed
independently for each pixel
 Incompatible with EAF, essentially exploiting redundancy

• Observation
Labeling is often spatially smooth away from edges. This allows for shared
label proposal and data cost computation for spatially neighboring pixels.

• Our solution
A superpixel based particle sampling belief propagation method, 
leveraging efficient filter-based cost aggregation

Sped-up Patch Match Belief Propagation  (SPM-BP)
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Sped-up Patch Match Belief Propagation

• Two-Layer Graph Structures in SPM-BP

• Scan Superpixels and Perform :
oNeighbourhood Propagation
oRandom Search

1. Shared particle generation
2. Shared data cost computation

1. Message passing
2. Particle selection
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Related works

Pixel based MRF

Local methods
[Rhemann et al., CVPR’11]
[Lu et al., CVPR’13]

Only rely on data term

Superpixel based MRF
[Kappes et al., IJCV’15]
[Güney & Geiger, CVPR’15]

Superpixel-based MRF: each superpixel is a node in the graph and all pixels of the 
superpixel are constrained to have the same label. 

Our two-layer graph: superpixel are employed only for particle generation and 
data cost computation, the labeling is performed for each pixel independently.

Superpixels as graph nodes
Image courtesy of [Kappes et al., IJCV’15]
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Comparison of existing labeling optimizers

Local labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label 
space

handling 

w/o PatchMatch: 
O(|L|)

Adaptive Weighting
[PAMI’06]

Cost Filtering
[CVPR’11]

w/ PatchMatch:
O(log|L|)

PM Stereo
[BMVC’11]

PMF
[CVPR’13]

Global labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label 
space

handling 

w/o PatchMatch: 
O(|L|)

BP
[PAMI’06]

Fully-connected 
CRFs [NIPS’11]

w/ PatchMatch:
O(log|L|)

PMBP
[IJCV’14]

SPM-BP
[This paper]
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64

SPM-BP: Neighbourhood Propagation
 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

K=3

1-1) Randomly select one pixel from each 
neighbouring superpixel

1-2) Add the particles at these pixels into 
the proposal set

Label space
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SPM-BP: Neighbourhood Propagation
 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

K=3

1-1) Randomly select one pixel from each 
neighbouring superpixel

1-2) Add the particles at these pixels into 
the proposal set
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SPM-BP: Neighbourhood Propagation
 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

pEp(l)

l
l = l1l1

2-1) Compute the raw matching data 
cost of these labels in a slightly 
enlarged region

2-2) Compute the aggregated data cost 
for each label by performing EAF on 
the raw matching cost
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SPM-BP: Neighbourhood Propagation

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

pEp(l)

l
l = l1

l = l2

l = l15

l1

2-1) Compute the raw matching data 
cost of these labels in a slightly 
enlarged region

2-2) Compute the aggregated data cost 
for each label by performing EAF on 
the raw matching cost
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SPM-BP: Neighbourhood Propagation

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

3-1) Perform message passing for pixels 
within the superpixel.
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SPM-BP: Neighbourhood Propagation

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

3-1) Perform message passing for pixels 
within the superpixel.

3-2) Keep K particles with the smallest 
disbeliefs at each pixel.

l

keep K particles

top K particles
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SPM-BP: Random Search

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

1-1) Randomly select one pixel in the 
visiting superpixel
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SPM-BP: Random Search

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

1-1) Randomly select one pixel in the 
visiting superpixel

1-2) Generate new proposals around the 
sampled particles
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SPM-BP: Random Search

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

pEp(l)

l = l1
l = l2

l = l15

l

2-1) Compute the raw matching data 
cost of these labels in a slightly 
enlarged region

2-2) Compute the aggregated data cost 
for each label by performing EAF on 
the raw matching cost



73

SPM-BP: Random Search

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

3-1) Perform message passing for pixels 
within the superpixel.

3-2) Keep K particles with the smallest 
disbeliefs at each pixel.

l

keep K particles
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SPM-BP: Recap

Data cost 
computation 

using EAF

Message 
passing 
at pixel 

level

Iterate

Superpixel
based 

particle 
generation 

Random Initialization 

Final labels
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Complexity Comparison

|W| – local window size (e.g. 31x31 for stereo)
K – number of particles used (small constant)
N – number of pixels
L – label space size (e.g. over 10 million for flow)

*PMF stores only one best particle (K = 1) per pixel node, thus
requiring more iterations than the other two methods.
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Example Applications

• Stereo with slanted surface supports
– label: 3D plane normal ݈௣ = (ܽ௣, ܾ௣, ܿ௣)

– Matching features: color + gradient

– Smoothness term: deviation between two local planes

– Cross checking + post processing for occlusion

• Large-displacement optical flow
– label: 2D displacement vector ݈௣ = ,ݑ) (ݒ

– Matching features: color + Census transform 

– Smoothness term: truncated L2 distance 

– Cross checking + post processing for occlusion
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#iteration = 5, K = 3

K = 3

Convergence 
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Convergence 

K = 3
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Stereo results

SPM-BP (ours)
30 sec.

PMBP
3100 sec.

Stereo input

PMF
20 sec.

Much faster than PMBP, and much better than PMF for textureless regions
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Stereo results

SPM-BP (ours)PMBP

Stereo input

PMF SPM-BP (ours)
30 sec.

PMBP
3100 sec.

PMF
20 sec.
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Optical flow results

Optical flow input PMBP
2103 sec.

SPM-BP (ours)
42 sec.

PMF
27 sec.

Much faster than PMBP, and much better than PMF for textureless regions
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Optical flow results
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Performance Evaluation
Middlebury Stereo Performance (Tsukuba/Venus/Teddy/Cones )

Optical Flow Performance on MPI Sintel Benchmark 
(captured on  16/04/2015)

Middlebury Stereo 2006 Performance

Remarks
• A simple formulation, without 

needing complex energy terms 
nor a separate initialization

• Achieved top-tier performance, 
even when compared to task-
specific techniques

• Applied on the full pixel grid, 
avoiding coarse-to-fine steps
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Conclusion

• SPM-BP is simple, effective and efficient
• Takes the best computational advantages of
 efficient edge-aware cost filtering
 and superpixel-based particle-sampling for message passing

• Offers itself as a general and efficient global optimizer for
continuous MRFs

• Future work
 Robust dense correspondences for cross-scene matching
 Dealing with high-order terms in MRF

Code is now available online: 
https://github.com/yu-li/spm-bp
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Future work (1/2)
• A better and efficient optimizer for MRF model

– Efficient, global discrete optimization for more flexible energy 
formulation

1. Dealing with high-dimensional label spaces
2. Using stronger unary term with learning based or cost 

aggregation based approaches
3. Solving high-order MRF model 
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Future work (2/2)
• Recent papers encouraging further research

– Sparse2Dense [EpicFlow-CVPR’15]
– Learning-based regularization [data-driven-3DV’14]
– Object-level constraint in the regularization [Displets-CVPR’15]



87

Resources
• ICME’15 tutorial: Visual Correspondences: Taxonomy, 

Modern Approaches and Ubiquitous Applications
http://www.icme2015.ieee-icme.org/tutorials.php

• More resources
– VMA site (papers, demos, code)

http://publish.illinois.edu/visual-modeling-and-analytics/

– CVLAB at CNU
http://cvlab.cnu.ac.kr/

Project page is now available, including codes, slides, and references!
https://sites.google.com/site/icme15tutorial/


