
1

Part 2: Regularizing the estimates: labeling optimization
(40 mins)

• Local labeling optimization
– Local data aggregation and cost volume filtering, PAMI 2013
– PatchMatch Filter, CVPR 2013

• Global labeling optimization
– PatchMatch Belief Propagation, IJCV 2014
– Sped-up PatchMatch Belief Propagation, ICCV 2015

2

MRF-based global labeling optimization

• Elegant formulation as Markov random fields

• Slow even with efficient energy minimization algorithms

3

MRF-based global labeling optimization

I1 I2 D

W1(i) W2(i+D(i)) D(i)

data term smoothness term

    
jii

jDiDiDiWiWDE
,neighbors

2
21)()())(()()(

݈∗ = ݃ݎܽ min
௟

ܽ

4

General Formulation - Recap
• Find the label ݈௣ for each pixel ݌, for instance, by minimizing the

following objective consisting of the data fidelity ܧ௣ and the prior
term ܧ௣௤

Evaluating matching evidences with
local image descriptors or matching
similarity measures

Enforcing the spatial smoothness constraint

݈∗ = ݃ݎܽ min
௟

ܽ

5

General Formulation: Local vs. Global?
• Local approaches

– Using the data fidelity term only
– Typically, aggregating the data

cost with Edge-Aware Filtering
(EAF)

Cost Volume Filtering, CVPR 2012
PatchMatch Filter, CVPR 2013

• Global approaches
– Using both the data fidelity and

prior terms
– Optionally, aggregating the data

cost with edge-aware filtering for
stronger performance

|ܹ| = 1, No cost aggregation

Belief Propagation, IJCV 2006
PatchMatch Belief Propagation, IJCV 2014
Sped-up PatchMatch Belief Propagation, ICCV 2015

6

[Petschnigg et al. SIGGRAPHY04] [Eisemann et al. SIGGRAPHY04]

• Based on cross/joint (bilateral) filtering principles

Efficient Edge-Aware Filtering (EAF)
as a fast alternative to global labeling optimization

7

PMF (PATCH-MATCH FILTER)

• J. Lu, H. Yang, D. Min*, and M. N. Do, ‘PatchMatch Filter: Efficient Edge-Aware Filtering Meets Randomized Search for Fast
Correspondence Field Estimation (CVPR), 2013. (oral presentation, acceptance rate < 4.0%, *: corresponding author)

8

Edge-Aware Filtering for Discrete Labeling Optimization

• Labeling: assigning a label for all pixels (e.g. depth, motion)

Left image Right image

ܪ

ܹܮ

ܹ

ܪ

ܮ : Search range

Window ࡹ

Examples of label maps Applications using depth/motion
- View synthesis for 3DTV
- Frame up-conversion (30 60fps)
- 3D scene reconstruction
- Scene understanding
- 3D video editing

Depth map

Motion map

9

ܮ : Search range

Left image Right image

ܹ

ܪ

࢒ = ૙ ࢒ = ࡸ − ૚࢒ = ૚࢒ = ૛ ܪ

ܹ

ܮ

Edge-Aware Filtering for Discrete Labeling Optimization

Data cost
calculation

JOINT Edge-Aware Filtering
for each slice of (࢒)࡯

3D cost volume (࢒)࡯

Reference pixel

10
[Yoon & Kweon,PAMI06], [Rhemann et al.,CVPR11]

• Based on cross/joint (bilateral) filtering principles
• Cost volume filtering – repeated cross/joint filtering
• Runtime is often independent of the filter kernel size m

஼௢௦௧ݐݑ݌ݐݑܱ = ,ݎ݋݈݋ܥ)۴ۯ۳ (஼௢௦௧݅݊ܫ
While a label
݈ = 0 → ܮ − 1

Edge-Aware Filtering for Discrete Labeling Optimization

11

Edge-Aware Filtering for Discrete Labeling Optimization

Simple WTA
݀ ݌ = ݃ݎܽ min

௟
(݈)ሚ௣ܥ

[Yoon & Kweon,PAMI06], [Rhemann et al.,CVPR11]

12

Fast Cost-Volume Filtering for Visual Correspondence and Beyond
(CVPR 2011, PAMI 2013)

• Reducing computational cost in terms of ܯ
– By using O(1) time edge-aware filtering (EAF): Guided Filter (GF)

(ࡸࡹࡵ)ࡻ (ࡸࡵ)ࡻ

filter size, L: label size :ܯ ,(ܹ×ܪ) image size :ܫ

ܪ

ܹ
ܮ

ܯ

13

But, the curse of the label search space

O(I*L) !!

Also said for recent filter-based mean-field inference for random fields [Vineet et al. ECCV12]

14

The label space can be HUGE

• Two-dimensional motion search
• Displacement in subpixel accuracy
• Over-parameterized surface or motion modeling
• …

• e.g. motion search range in [-40, 40]*[-40, 40] * 8 * 8 →
ࡸ = ૝૚૙, ૙૙૙ labels! → ૝૚૙, ૙૙૙ joint filtering!

15

The label space can be HUGE

• Two-dimensional motion search
• Displacement in subpixel accuracy
• Over-parameterized surface or motion modeling
• …

• e.g. motion search range in [-40, 40]*[-40, 40] * 8 * 8 →
ࡸ = ૝૚૙, ૙૙૙ labels! → ૝૚૙, ૙૙૙ joint filtering!

Too slow to stop at every floor
O(I*L) !!

16

• Find for every patch in A the nearest
neighbor in B under a patch distance metric
• Iterative propagation & random search

O(I*M*logL) !!

[Barnes et al., SIGGRAPH09,
ECCV10]

filter size, L: label size :ܯ ,(ܹ×ܪ) image size :ܫ

PatchMatch for Approximate Nearest-Neighbor Field
(ANNF)

17

PatchMatch for Local Labeling Optimization

1 10 37 80

59 20 75 95

72 41 28 50

55 30 92 62

1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized
at pixel ݌ with label ݈

௧ܦ ݌ : Label map at tth iteration of pixel ݌

18

PatchMatch for Local Labeling Optimization

1 10 37 80

59 20 75 95

72 41 28 50

55 30 92 62

1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized
at pixel ݌ with label ݈

௧ܦ ݌ : Label map at tth iteration of pixel ݌

15 20 35 73

51 30 75 95

72 41 28 50

55 30 92 62

2. Propagation

(݌)௧ܦ = arg min
௔∈ {ଷହ,ଷ଴,଻ହ}

ܧ ,݌ ܽ

19

PatchMatch for Local Labeling Optimization

1 10 37 80

59 20 75 95

72 41 28 50

55 30 92 62

1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized
at pixel ݌ with label ݈

௧ܦ ݌ : Label map at tth iteration of pixel ݌

15 20 35 73

51 30 75 95

72 41 28 50

55 30 92 62

2. Propagation

(݌)௧ܦ = arg min
௔∈ {ଷହ,ଷ଴,଻ହ}

ܧ ,݌ ܽ

30

20

PatchMatch for Local Labeling Optimization

1 10 37 80

59 20 75 95

72 41 28 50

55 30 92 62

1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized
at pixel ݌ with label ݈

௧ܦ ݌ : Label map at tth iteration of pixel ݌

15 20 35 73

51 30 75 95

72 41 28 50

55 30 92 62

2. Propagation

(݌)௧ܦ = arg min
௔∈ {ଷହ,ଷ଴,଻ହ}

ܧ ,݌ ܽ

30

15 20 35 73

51 30 30 95

72 41 28 50

55 30 92 62

3. Random Search

௧ܦ ݌ = arg min
௔∈஺

ܧ ,݌ ܽ

ܣ = 30 +
ܴ
2௜ |݅ = 1, … , ܯ

60

21

PatchMatch for Local Labeling Optimization

1 10 37 80

59 20 75 95

72 41 28 50

55 30 92 62

1. Random Initialization of ܦ଴ ݌

Toy example
A set of label candidates ܮ = {0,1, … , 99}

,݌)ܧ ݈): Energy function to be minimized
at pixel ݌ with label ݈

௧ܦ ݌ : Label map at tth iteration of pixel ݌

15 20 35 73

51 30 75 95

72 41 28 50

55 30 92 62

2. Propagation

(݌)௧ܦ = arg min
௔∈ {ଷହ,ଷ଴,଻ହ}

ܧ ,݌ ܽ

30

15 20 35 73

51 30 30 95

72 41 28 50

55 30 92 62

௧ܦ ݌ = arg min
௔∈஺

ܧ ,݌ ܽ

ܣ = 30 +
ܴ
2௜ |݅ = 1, … , ܯ

60

Repeat ࢀ times!

3. Random Search

22

PatchMatch for Local Labeling Optimization

23

[Bleyer et al., BMVC11]
PatchMatch stereo

[Min et al., ICCV11]

Histogram-based
prefiltering

O(I*M*logL) !!

O(I*M*L/s) !!

filter size, L: label size :ܯ ,(ܹ×ܪ) image size :ܫ

Related work dealing with the huge label space

24

But, the cost is still huge: New approach?

• Computational complexity of local labeling optimization

– Brute force approach: (ࡸࡹࡵ)ࡻ

– CostFilter (CVPR 2011, PAMI 2013): ࡻ ࡸࡵ

– PatchMatch (SIGGRAPH 2009, ECCV 2010): ࡻ ࡸࢍ࢕࢒ࡹࡵ

– Histogram-based prefiltering (ICCV 2011): ࡻ(ࡸࡹࡵ/૚૙)
 ,filter size :ܯ ,(ܹ×ܪ) image size :ܫ
L: label size

ܪ

ܹ
ܮ

ܯ

25

Our goal is to find a bridge to
enjoy high “throughput” !!

Photo courtesy: www.pamitc.org/cvpr13/attending.php

EAF
O(I*L)

PatchMatch
O(I*M*logL)

PatchMatch Filter
O(I*logL)

26

• Significantly different objectives
• Disparate computation pattern
• Disparate memory access pattern

VsEAF: Highly regular and
deterministic computing

PM: Random and
fragmented data access

Meeting the two is never easy

27

Random Access on Label Space Makes Problem DIFFICULT

• Pixel-wise randomized search of original PatchMatch
– Fragmental data access on 3D cost volume

3D cost volume

ܪ

ܹܮ

,ݔ) ,ݕ ݀ଵ)

Matching window for
aggregation (nonlinear filtering)

ݔ) + 1, ,ݕ ݀ଶ) This random access hinders the
application of efficient ܱ(1) filtering
technique
- ݀ଵ for (ݔ, (ݕ and ݀ଶ for (ݔ + 1, (ݕ

(ࡸࢍ࢕࢒ࡹࡵ)ࡻ
filter size, L: label size :ܯ ,(ܹ×ܪ) image size :ܫ

28

(૚)ࡻ filtering needs redundancy!

• Redundancy of simultaneously computing a weighted
sum for all pixels
– Guided filter (ECCV 2010, PAMI 2013): Multiple number of

integral sum (box filtering)
– Recursive filter of Domain Transform method (SIGGRAPH

2011): Recursive propagation of aggregated data in causal
and non-causal manners

– (૚)ࡻ Bilateral Filter on bilateral grid (ECCV 2006): Linear
Gaussian filtering on high dimensional volume

The filtered data of
should be reused for filtering

29

We did it: Ours (f) runs 10x faster than
CostFilter (e), with even higher accuracy

30

PatchMatch Filter (PMF)
• Super-pixel based randomized search algorithm

– Collaborative filtering within a single super-pixel

• Efficient filtering + PatchMatch algorithm
– Collaborative randomized search

(ࡸࡵ)ࡻ +(ࡸࢍ࢕࢒ࡹࡵ)ࡻ (ࡸࢍ࢕࢒ࡵ)ࡻ

Processing unit
for filtering

 ,filter size :ܯ ,(ܹ×ܪ) image size :ܫ
L: label size

ܪ

ܹ
ܮ

ܯ

31

Segments as the bridge
• Labeling solutions are spatially smooth and discontinuities-aligned
 Collaborative label search and propagation
 Extends the propagation range

• The efficiency of EAF comes from high computational redundancy
for shared computation reuse

[Achanta et al. PAMI12]

Note)
A simple method, dividing an image
into non-overlapped rectangular
blocks, is also possible!
 But, this makes the algorithm
being converged much slower!

32

Baseline PMF algorithm: General recipe
1. Initial label assignment to each segment
2. Process each segment in scan order iteratively

– For the current segment, evaluate the candidate labels generated from
two sources: propagation & random search

Raw cost
computation

for subimages

Cost
aggregation for

subimages

WTA for
bounding-

boxes

Neighborhood
propagation Random search

Plausible labels

Label producer

Consumer

Note that the cost aggregation (filtering) is done for each segment
the label decision (WTA) is done for each pixel

33

)(kS
kc

)(kcB

)(kcR r

rr

r

I

)(kS
)(iS

)(kS
kc

)(kcB

)(kcR r

rr

r

)(kS
kc

)(kcB

)(kcR r

rr

r

Neighborhood label propagation &
evaluation

34

)(kS
kc

)(kcB

)(kcR r

rr

r

I

)(kS
)(iS

)(kS
kc

)(kcB

)(kcR r

rr

r

)(kS
kc

)(kcB

)(kcR r

rr

r

A list records the labels
visited for each segment S(k),
so NO subimage filtering for
any revisited label.

Random search & evaluation
Note that the filtering is done for each segment,
but the label decision is done for each pixel

35

Complexity Comparison

• Computational complexity of local labeling optimization

– Brute force approach: (ࡸࡹࡵ)ࡻ

– CostFilter (CVPR 2011, PAMI 2013): ࡻ ࡸࡵ

– PatchMatch (SIGGRAPH 2009, ECCV 2010): ࡻ ࡸࢍ࢕࢒ࡹࡵ

– Histogram-based prefiltering (ICCV 2011): ࡻ(ࡸࡹࡵ/૚૙)

– PatchMatch Filter (ours): (ࡸࢍ࢕࢒ࡵ)ࡻ

 ,filter size :ܯ ,(ܹ×ܪ) image size :ܫ
L: label size

ܪ

ܹ
ܮ

ܯ

36

PMF for Stereo – Slanted surface handling

• Label: for each pixel p, find a 3D plane

Image courtesy of [Bleyer et al., BMVC11]

37

PMF for Stereo – Slanted surface handling

• Label: for each pixel p, find a 3D plane
• Hypothetical correspondence location (q, q’)

• Raw matching cost

• PMF-based cost aggregation
• Post processing

– Cross-checking, plane extrapolation for unreliable pixels,
weighted median filter

38

PMF for Optical flow

• Label: for each pixel p, find a disp. vector
• For sub-pixel accurate flow, upscaling (u,v)-dim. by 8
• Hypothetical correspondence location (q, q’=q+(u,v))
• Raw matching cost

• PMF-based cost aggregation
• Post processing

– Cross-checking, iterative weighted median filter, smoothing

39

Convergence and time-accuracy trade-off

40

41

Guided Filter (GF) and
Cross-based Local Multipoint Filtering (CLMF)

* Both O(1)-time algorithms
with leading EAF performance

* CLMF-0 is 2-3x faster than
GF, CLMF-1 gives better quality

[He et al. ECCV10]

[Lu et al. CVPR12]

42

Middlebury stereo benchmark evaluation

• Improvement of PMF due to implicit regularization by segment-based propagation
• PMF does not sacrifice the matching accuracy (compared to the original PatchMatch),

for improving the runtime efficiency!

43

• PMF-C runs over 3-7x faster for high-res. stereo images
(e.g. 1M pixels) than CostFilter

• PMF-S over 10x faster than PatchMatch Stereo[7]
• In any case, w/ CLMF-0 runs 2-3x than w/ GF

44

45

Our PMF

CostFilter [Rhemann et al.,CVPR11]

46

Middlebury optical flow evaluation

47

Middlebury optical flow evaluation

• PMF gives an order of magnitude runtime speedup
• PMF runs even over 30x faster than CostFilter[17] on the same PC

48

SPM-BP (SPED-UP PATCHMATCH
BELIEF PROPAGATION)

• Y. Li, D. Min*, M. S. Brown, M. N. Do, and J. Lu, ‘SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs,’ IEEE Int. Conf.
on Computer Vision (ICCV), Dec. 2015. (oral presentation, acceptance rate < 4.0%, *: corresponding author)

49

Discrete Pixel-Labeling Optimization on MRF

• Many computer vision tasks can be formulated as a
pixel-labeling problem on Markov Random Field (MRF)

pixel, ௣ܰ: 4 neighbors :݌

 Simple: data term + smoothness term
 Effective: labeling coherence, discontinuity handling
 Optimization: Graph Cut, Belief Propagation, etc

Optical flow
l = (u,v)

Segmentation
l={B,G}

Denoising
l = intensity

Stereo
l = d

50

Belief Propagation (BP)

Iterative process in which
neighbouring nodes “talk”
to each other:
– Update message between

neighboring pixels

– Stop after T iterations, decide
the final label by picking the
smallest dis-belief

1
݉ଶ,ଵ

(௧)
2

5

4

3

݉ସ,ଶ
(௧ିଵ)

݉ହ,ଶ
(௧ିଵ)

݉ଷ,ଶ
(௧ିଵ)

ଶܧ

2

5

4 1

3

݉ଵ,ଶ
்

݉ସ,ଶ
்

݉ହ,ଶ
்

݉ଷ,ଶ
்

ଶܧ

 Challenge:
When the label set L is huge or densely sampled, BP faces
prohibitively high computational challenges.

51

Particle Belief Propagation (PBP)

[Ihler and McAllester, “Particle Belief Propagation,” AISTATS’09]

– Solution:
(1) only store messages for K labels (particles)

l (discrete label)

l

(2) generate new label particles with the MCMC sampling using
a Gaussian proposal distribution

Challenge:
MCMC sampling is still inefficient and slow for continuous
label spaces (e.g. stereo with slanted surfaces).

52

Patch Match Belief Propagation (PMBP)

2

5

4 1

3

[Besse et al, “PMBP: PatchMatch Belief Propagation for
Correspondence Field Estimation,” IJCV 2014]
• Solution:
Use Patch Match[Barnes et al. Siggraph’09]’s sampling algorithm –
augment PBP with label samples from the neighbours as proposals

• Orders of magnitude faster than PBP

53

• Effectively handles large label spaces in message passing
• Successfully applied to stereo with slanted surface modeling

[Bleyer et al., BMVC’11]
Label: 3D plane normal ݈ = (ܽ௣, ܾ௣, ܿ௣)

Patch Match Belief Propagation (PMBP)

Left image Disparity map 3D reconstruction

• Also successfully applied to optical flow [Hornáček et al., ECCV’14]

Disparity map 3D reconstruction

݈ = (ݎ݁݃݁ݐ݊݅) ݀ ݈ = (ܽ௣, ܾ௣, ܿ௣)

Image courtesy of [Bleyer et al., BMVC’11]

54

Problem of PMBP

• However, it suffers from a heavy computational load
on the data cost computation

• Many works strongly suggest to gather stronger
evidence from a local window for the data term

Left view Right view Weight Raw matching cost

lp

55

Optical Flow

Er
ro

r

w

Stereo

Er
ro

r

w

Data term is important!

• Better results with larger window sizes (2w+1)^2, but more
computational cost!

w = 0

w = 4
w = 20

w = 0

w = 4

w = 20

56

Aggregated data cost computation
• Cross/joint/bilateral filtering principles

• Local discrete labeling approaches have often used efficient
O(1)-time edge-aware filtering (EAF) methods [Rhemann et al.,
CVPR’11].
– O(1)-time: No dependency on window size used in EAF

Guided Filter [He et al. ECCV 2010] Cross-based Local Multipoint Filtering
(CLMF) [Lu et al. CVPR 2012]

57

Why does PMBP NOT use O(1) time EAF?

• Particle sampling and data cost computation are performed
independently for each pixel
 Incompatible with EAF, essentially exploiting redundancy

• Observation
Labeling is often spatially smooth away from edges. This allows for shared
label proposal and data cost computation for spatially neighboring pixels.

• Our solution
A superpixel based particle sampling belief propagation method,
leveraging efficient filter-based cost aggregation

Sped-up Patch Match Belief Propagation (SPM-BP)

58

Sped-up Patch Match Belief Propagation

• Two-Layer Graph Structures in SPM-BP

• Scan Superpixels and Perform :
oNeighbourhood Propagation
oRandom Search

1. Shared particle generation
2. Shared data cost computation

1. Message passing
2. Particle selection

59

Related works

Pixel based MRF

Local methods
[Rhemann et al., CVPR’11]
[Lu et al., CVPR’13]

Only rely on data term

Superpixel based MRF
[Kappes et al., IJCV’15]
[Güney & Geiger, CVPR’15]

Superpixel-based MRF: each superpixel is a node in the graph and all pixels of the
superpixel are constrained to have the same label.

Our two-layer graph: superpixel are employed only for particle generation and
data cost computation, the labeling is performed for each pixel independently.

Superpixels as graph nodes
Image courtesy of [Kappes et al., IJCV’15]

60

Comparison of existing labeling optimizers

Local labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label
space

handling

w/o PatchMatch:
O(|L|)

Adaptive Weighting
[PAMI’06]

Cost Filtering
[CVPR’11]

w/ PatchMatch:
O(log|L|)

PM Stereo
[BMVC’11]

PMF
[CVPR’13]

Global labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label
space

handling

w/o PatchMatch:
O(|L|)

BP
[PAMI’06]

Fully-connected
CRFs [NIPS’11]

w/ PatchMatch:
O(log|L|)

PMBP
[IJCV’14]

SPM-BP
[This paper]

61

Comparison of existing labeling optimizers

Local labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label
space

handling

w/o PatchMatch:
O(|L|)

Adaptive Weighting
[PAMI’06]

Cost Filtering
[CVPR’11]

w/ PatchMatch:
O(log|L|)

PM Stereo
[BMVC’11]

PMF
[CVPR’13]

Global labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label
space

handling

w/o PatchMatch:
O(|L|)

BP
[PAMI’06]

Fully-connected
CRFs [NIPS’11]

w/ PatchMatch:
O(log|L|)

PMBP
[IJCV’14]

SPM-BP
[This paper]

62

Comparison of existing labeling optimizers

Local labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label
space

handling

w/o PatchMatch:
O(|L|)

Adaptive Weighting
[PAMI’06]

Cost Filtering
[CVPR’11]

w/ PatchMatch:
O(log|L|)

PM Stereo
[BMVC’11]

PMF
[CVPR’13]

Global labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label
space

handling

w/o PatchMatch:
O(|L|)

BP
[PAMI’06]

Fully-connected
CRFs [NIPS’11]

w/ PatchMatch:
O(log|L|)

PMBP
[IJCV’14]

SPM-BP
[This paper]?

63

Comparison of existing labeling optimizers

Local labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label
space

handling

w/o PatchMatch:
O(|L|)

Adaptive Weighting
[PAMI’06]

Cost Filtering
[CVPR’11]

w/ PatchMatch:
O(log|L|)

PM Stereo
[BMVC’11]

PMF
[CVPR’13]

Global labeling approaches
Data cost computation

w/o EAF: O(|W|) w/ EAF: O(1)

Label
space

handling

w/o PatchMatch:
O(|L|)

BP
[PAMI’06]

Fully-connected
CRFs [NIPS’11]

w/ PatchMatch:
O(log|L|)

PMBP
[IJCV’14]

SPM-BP
[This paper]

64

SPM-BP: Neighbourhood Propagation
 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

K=3

1-1) Randomly select one pixel from each
neighbouring superpixel

1-2) Add the particles at these pixels into
the proposal set

Label space

65

SPM-BP: Neighbourhood Propagation
 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

K=3

1-1) Randomly select one pixel from each
neighbouring superpixel

1-2) Add the particles at these pixels into
the proposal set

66

SPM-BP: Neighbourhood Propagation
 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

pEp(l)

l
l = l1l1

2-1) Compute the raw matching data
cost of these labels in a slightly
enlarged region

2-2) Compute the aggregated data cost
for each label by performing EAF on
the raw matching cost

67

SPM-BP: Neighbourhood Propagation

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

pEp(l)

l
l = l1

l = l2

l = l15

l1

2-1) Compute the raw matching data
cost of these labels in a slightly
enlarged region

2-2) Compute the aggregated data cost
for each label by performing EAF on
the raw matching cost

68

SPM-BP: Neighbourhood Propagation

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

3-1) Perform message passing for pixels
within the superpixel.

69

SPM-BP: Neighbourhood Propagation

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

3-1) Perform message passing for pixels
within the superpixel.

3-2) Keep K particles with the smallest
disbeliefs at each pixel.

l

keep K particles

top K particles

70

SPM-BP: Random Search

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

1-1) Randomly select one pixel in the
visiting superpixel

71

SPM-BP: Random Search

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

l

1-1) Randomly select one pixel in the
visiting superpixel

1-2) Generate new proposals around the
sampled particles

72

SPM-BP: Random Search

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

pEp(l)

l = l1
l = l2

l = l15

l

2-1) Compute the raw matching data
cost of these labels in a slightly
enlarged region

2-2) Compute the aggregated data cost
for each label by performing EAF on
the raw matching cost

73

SPM-BP: Random Search

 Step 1. Particle propagation
 Step 2. Data cost computation
 Step 3. Message update

3-1) Perform message passing for pixels
within the superpixel.

3-2) Keep K particles with the smallest
disbeliefs at each pixel.

l

keep K particles

74

SPM-BP: Recap

Data cost
computation

using EAF

Message
passing
at pixel

level

Iterate

Superpixel
based

particle
generation

Random Initialization

Final labels

75

Complexity Comparison

|W| – local window size (e.g. 31x31 for stereo)
K – number of particles used (small constant)
N – number of pixels
L – label space size (e.g. over 10 million for flow)

*PMF stores only one best particle (K = 1) per pixel node, thus
requiring more iterations than the other two methods.

76

Example Applications

• Stereo with slanted surface supports
– label: 3D plane normal ݈௣ = (ܽ௣, ܾ௣, ܿ௣)

– Matching features: color + gradient

– Smoothness term: deviation between two local planes

– Cross checking + post processing for occlusion

• Large-displacement optical flow
– label: 2D displacement vector ݈௣ = ,ݑ) (ݒ

– Matching features: color + Census transform

– Smoothness term: truncated L2 distance

– Cross checking + post processing for occlusion

77

#iteration = 5, K = 3

K = 3

Convergence

78

Convergence

K = 3

79

Stereo results

SPM-BP (ours)
30 sec.

PMBP
3100 sec.

Stereo input

PMF
20 sec.

Much faster than PMBP, and much better than PMF for textureless regions

80

Stereo results

SPM-BP (ours)PMBP

Stereo input

PMF SPM-BP (ours)
30 sec.

PMBP
3100 sec.

PMF
20 sec.

81

Optical flow results

Optical flow input PMBP
2103 sec.

SPM-BP (ours)
42 sec.

PMF
27 sec.

Much faster than PMBP, and much better than PMF for textureless regions

82

Optical flow results

83

Performance Evaluation
Middlebury Stereo Performance (Tsukuba/Venus/Teddy/Cones)

Optical Flow Performance on MPI Sintel Benchmark
(captured on 16/04/2015)

Middlebury Stereo 2006 Performance

Remarks
• A simple formulation, without

needing complex energy terms
nor a separate initialization

• Achieved top-tier performance,
even when compared to task-
specific techniques

• Applied on the full pixel grid,
avoiding coarse-to-fine steps

84

Conclusion

• SPM-BP is simple, effective and efficient
• Takes the best computational advantages of
 efficient edge-aware cost filtering
 and superpixel-based particle-sampling for message passing

• Offers itself as a general and efficient global optimizer for
continuous MRFs

• Future work
 Robust dense correspondences for cross-scene matching
 Dealing with high-order terms in MRF

Code is now available online:
https://github.com/yu-li/spm-bp

85

Future work (1/2)
• A better and efficient optimizer for MRF model

– Efficient, global discrete optimization for more flexible energy
formulation

1. Dealing with high-dimensional label spaces
2. Using stronger unary term with learning based or cost

aggregation based approaches
3. Solving high-order MRF model

86

Future work (2/2)
• Recent papers encouraging further research

– Sparse2Dense [EpicFlow-CVPR’15]
– Learning-based regularization [data-driven-3DV’14]
– Object-level constraint in the regularization [Displets-CVPR’15]

87

Resources
• ICME’15 tutorial: Visual Correspondences: Taxonomy,

Modern Approaches and Ubiquitous Applications
http://www.icme2015.ieee-icme.org/tutorials.php

• More resources
– VMA site (papers, demos, code)

http://publish.illinois.edu/visual-modeling-and-analytics/

– CVLAB at CNU
http://cvlab.cnu.ac.kr/

Project page is now available, including codes, slides, and references!
https://sites.google.com/site/icme15tutorial/

