Part 2: Regularizing the estimates: labeling optimization (40 mins)

- Local labeling optimization
 - Local data aggregation and cost volume filtering, PAMI 2013
 - PatchMatch Filter, CVPR 2013

- Global labeling optimization
 - PatchMatch Belief Propagation, IJCV 2014
 - Sped-up PatchMatch Belief Propagation, ICCV 2015

MRF-based global labeling optimization

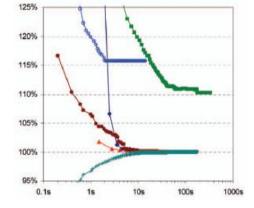
• Elegant formulation as Markov random fields

MRF Minimization

Results • Code

<u>Richard Szeliski</u> • <u>Ramin Zabih</u> • <u>Daniel Scharstein</u> • <u>Olga Veksler</u> • <u>Vladimir Kolmogorov</u> • <u>Aseem Agarwala</u> • <u>Marshall Tappen</u> • <u>Carsten Rother</u>

This site contains the results (plots and images) and code accompanying our paper



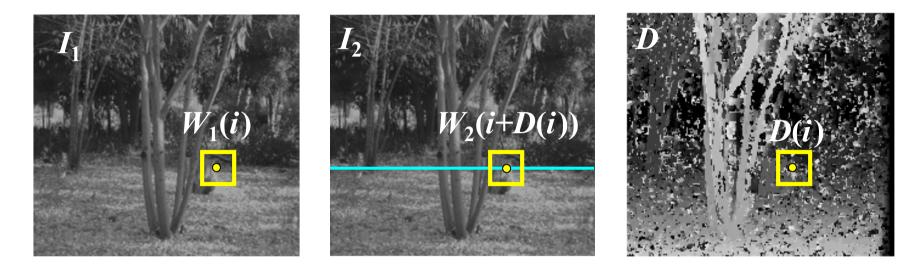
A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 30(6):1068-1080, June 2008.

The first version, corresponding to our ECCV 06 paper, is still available here.

$$E = E_d + \lambda E_s$$

Slow even with efficient energy minimization algorithms

MRF-based global labeling optimization



$$E(D) = \sum_{i} \left(W_{1}(i) - W_{2}(i + D(i)) \right)^{2} + \lambda \sum_{\substack{\text{neighbors } i, j \\ \text{data term}}} \rho \left(D(i) - D(j) \right)$$

$$l^* = \arg\min_{l} E = \sum_{p} E_p(l_p; W) + \sum_{p} \sum_{q \in \mathcal{N}_p} E_{pq}(l_p, l_q)$$

General Formulation - Recap

• Find the label l_p for each pixel p, for instance, by minimizing the following objective consisting of the data fidelity E_p and the prior term E_{pq}

$$l^* = \arg\min_{l} E = \sum_{p} E_p(l_p; W) + \sum_{p} \sum_{q \in \mathcal{N}_p} E_{pq}(l_p, l_q)$$

Evaluating matching evidences with local image descriptors or matching similarity measures

Enforcing the spatial smoothness constraint

General Formulation: Local vs. Global?

Local approaches

- Using the data fidelity term only
- Typically, aggregating the data cost with Edge-Aware Filtering (EAF)

$$E = \sum_{p} E_p(l_p; W)$$

Cost Volume Filtering, CVPR 2012 PatchMatch Filter, CVPR 2013

Global approaches

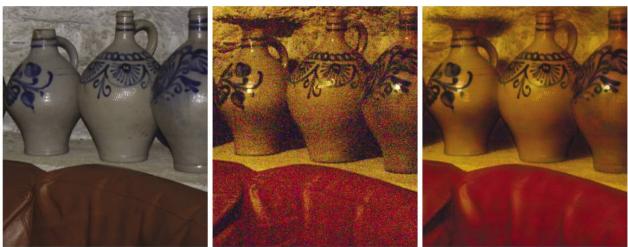
- Using both the data fidelity and prior terms
- Optionally, aggregating the data cost with edge-aware filtering for stronger performance

$$E = \sum_{p} E_p(l_p; W) + \sum_{p} \sum_{q \in \mathcal{N}_p} E_{pq}(l_p, l_q)$$

|W| = 1, No cost aggregation

Belief Propagation, IJCV 2006 PatchMatch Belief Propagation, IJCV 2014 Sped-up PatchMatch Belief Propagation, ICCV 2015

Efficient Edge-Aware Filtering (EAF) as a fast alternative to global labeling optimization



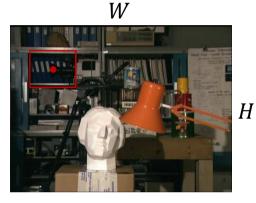
[Petschnigg et al. SIGGRAPHY04] [Eisemann et al. SIGGRAPHY04]

• Based on cross/joint (bilateral) filtering principles

PMF (PATCH-MATCH FILTER)

• J. Lu, H. Yang, D. Min*, and M. N. Do, 'PatchMatch Filter: Efficient Edge-Aware Filtering Meets Randomized Search for Fast Correspondence Field Estimation (CVPR), 2013. (oral presentation, acceptance rate < 4.0%, *: corresponding author)

• Labeling: assigning a label for all pixels (e.g. depth, motion)

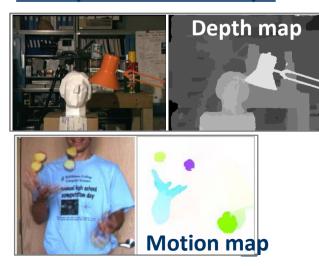


Left image

L : Search range

Right image

Examples of label maps



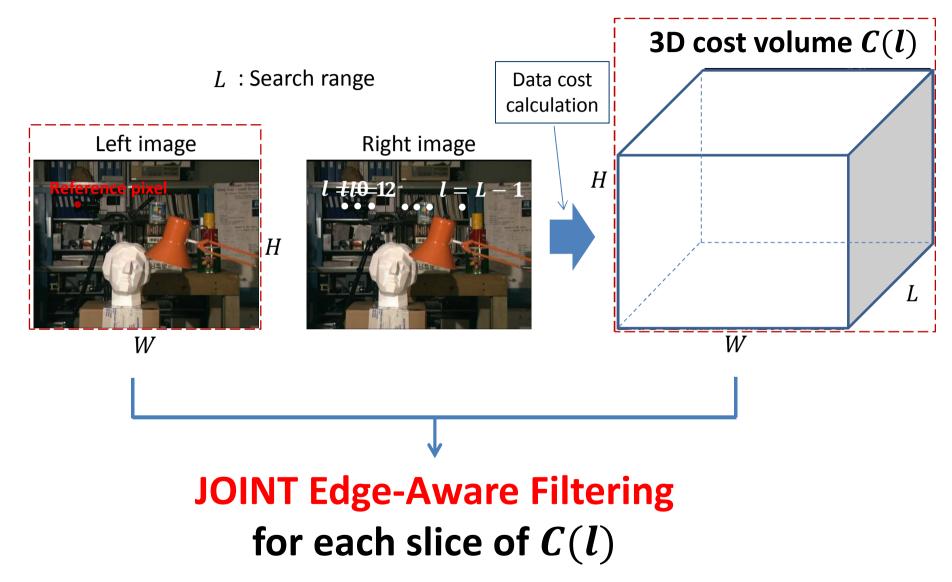
Applications using depth/motion

W

Η

Window M

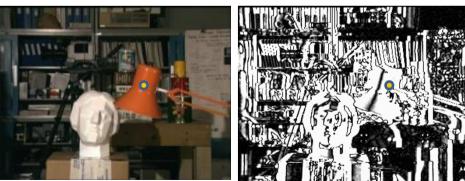
- View synthesis for 3DTV
- Frame up-conversion ($30 \rightarrow 60$ fps)
- 3D scene reconstruction
- Scene understanding
- 3D video editing



- Based on cross/joint (bilateral) filtering principles
- Cost volume filtering repeated cross/joint filtering
- Runtime is often independent of the filter kernel size m

$$Output_{Cost} = \mathbf{EAF}(Color, Ini_{Cost})$$

$$\tilde{C}_{p}(l) = \sum_{q \in W_{p}(r)} \omega_{q,p}(I) C_{q}(l)$$
While a label l = 0 \rightarrow L-

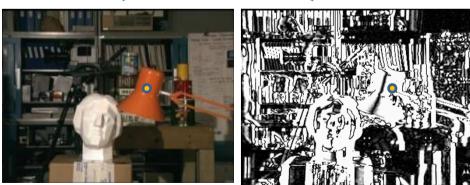


[Yoon & Kweon, PAMI06], [Rhemann et al., CVPR11]

Simple WTA

$$d(p) = \arg\min_{l} \tilde{C}_{p}(l)$$

$$\tilde{C}_p(l) = \sum_{q \in W_p(r)} \omega_{q,p}(I) C_q(l)$$



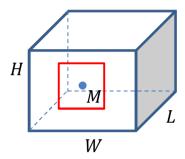
[Yoon & Kweon, PAMI06], [Rhemann et al., CVPR11]

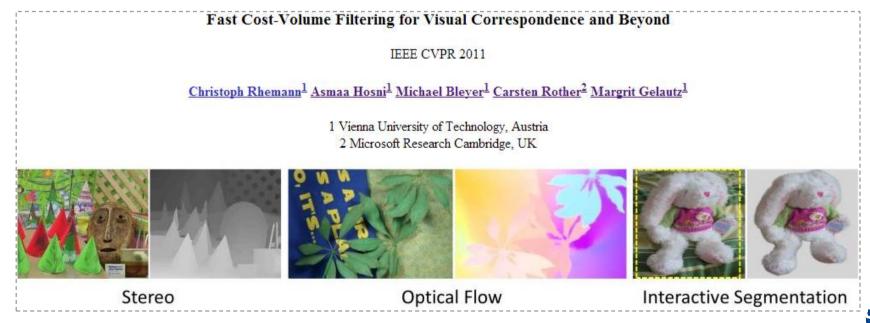
Fast Cost-Volume Filtering for Visual Correspondence and Beyond (CVPR 2011, PAMI 2013)

- Reducing computational cost in terms of *M*
 - By using O(1) time edge-aware filtering (EAF): Guided Filter (GF)

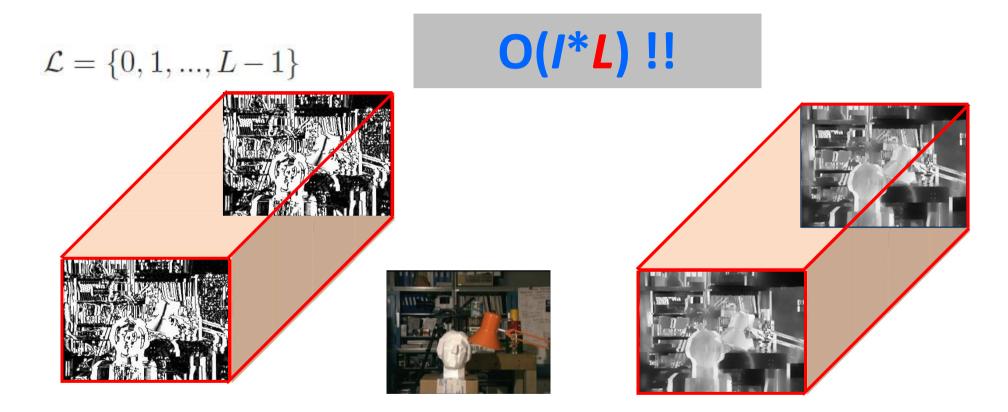
 $O(IML) \longrightarrow O(IL)$

I: image size $(H \times W)$, *M*: filter size, *L*: label size





But, the curse of the label search space



Also said for recent filter-based mean-field inference for random fields [Vineet et al. ECCV12]

The label space can be HUGE

- Two-dimensional motion search
- Displacement in subpixel accuracy
- Over-parameterized surface or motion modeling

e.g. motion search range in [-40, 40]*[-40, 40] * 8 * 8 →
 L = 410,000 labels! → 410,000 joint filtering!

The label space can be HUGE

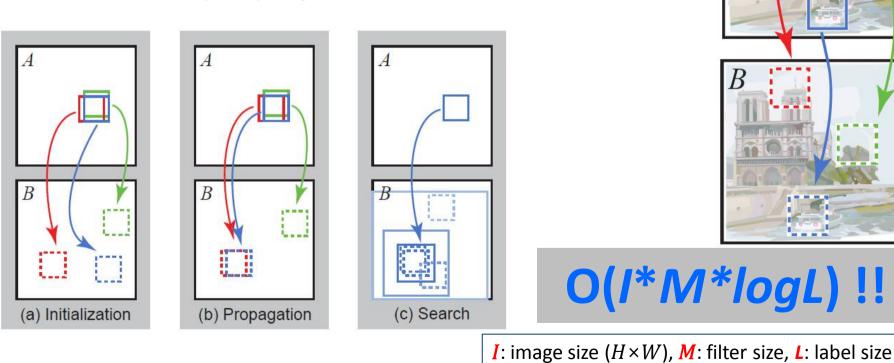
- Two-dimensional motion search
- Displacement in subpixel accuracy
- Over-parameterized surface or motion modeling

e.g. motion search range in [-40, 40]*[-40, 40] * 8 * L = 410,000 labels! $\rightarrow 410,000$ joint filtering!

Too slow to stop at every floor O(/*L) !!

PatchMatch for Approximate Nearest-Neighbor Field (ANNF)

- Find for every patch in A the nearest neighbor in B under a patch distance metric
- Iterative propagation & random search



÷ mě

[Barnes et al., SIGGRAPH09, ECCV10]

Toy example

A set of label candidates $L = \{0, 1, \dots, 99\}$

1. Random Initialization of $D^0(p)$

1	10	37	80
59	20	75	95
72	41	28	50
55	30	92	62

E(p, l): Energy function to be minimized at pixel p with label l $D^{t}(p)$: Label map at t^{th} iteration of pixel p

Toy example

A set of label candidates $L = \{0, 1, \dots, 99\}$

1. Random Initialization of $D^0(p)$

1	10	37	80	
59	20	75	95	
72	41	28	50	
55	30	92	62	

E(p, l): Energy function to be minimized at pixel p with label l $D^{t}(p)$: Label map at t^{th} iteration of pixel p

2. Propagation

15	20	35	73
51	30	75	95
72	41	28	50
55	30	92	62

 $D^t(p) = \argmin_{a \in \{35, 30, 75\}} E(p, a)$

Toy example

A set of label candidates $L = \{0, 1, \dots, 99\}$

1. Random Initialization of $D^0(p)$

1	10	37	80	
59	20	75	95	
72	41	28	50	
55	30	92	62	

E(p, l): Energy function to be minimized at pixel p with label l $D^{t}(p)$: Label map at t^{th} iteration of pixel p

2. Propagation

15	20	35	73
51	30	30	95
72	41	28	50
55	30	92	62

 $D^t(p) = \argmin_{a \in \{35, 30, 75\}} E(p, a)$

15

51

72

55

Toy example

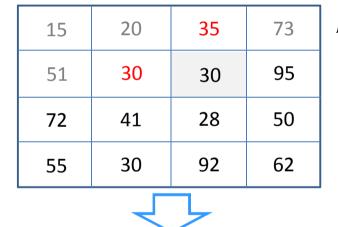
A set of label candidates $L = \{0, 1, \dots, 99\}$

1. Random Initialization of $D^0(p)$

1	10	37	80	
59	20	75	95	
72	41	28	50	
55	30	92	62	

E(p, l): Energy function to be minimized at pixel p with label l $D^{t}(p)$: Label map at t^{th} iteration of pixel p

2. Propagation



20

30

41

30

35

60

28

92

73

95

50

62

$$D^{t}(p) = \underset{a \in \{35, 30, 75\}}{\operatorname{arg\,min}} E(p, a)$$

 $D^t(p) = \operatorname*{arg\,min}_{a \in A} E(p, a)$

 $A = \left\{ \frac{30}{2^{i}} + \frac{R}{2^{i}} | i = 1, \dots, M \right\}$

3. Random Search

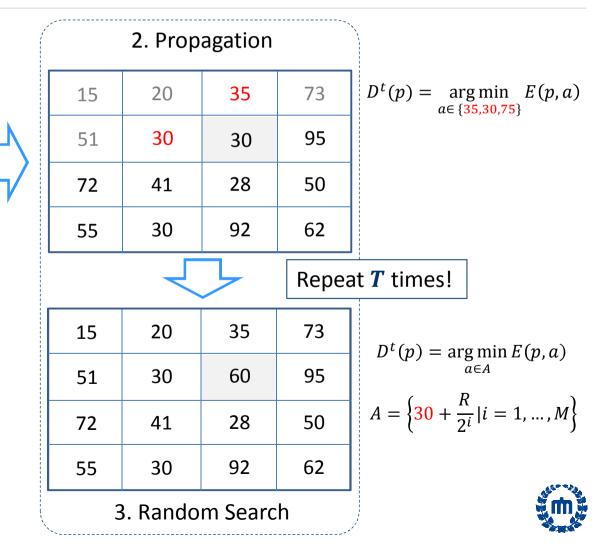
Toy example

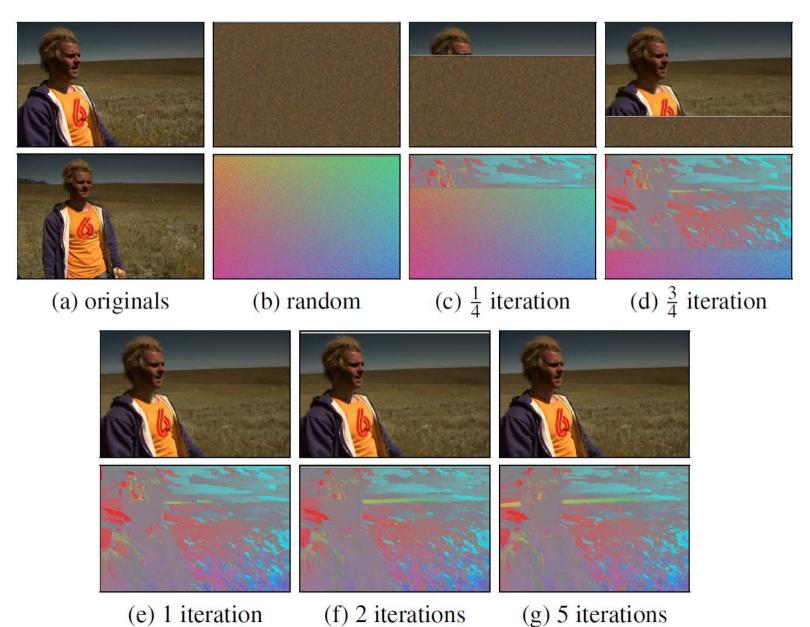
A set of label candidates $L = \{0, 1, \dots, 99\}$

1. Random Initialization of $D^0(p)$

1	10	37	80
59	20	75	95
72	41	28	50
55	30	92	62

E(p, l): Energy function to be minimized at pixel p with label l $D^{t}(p)$: Label map at t^{th} iteration of pixel p





Related work dealing with the huge label space

Left image

Disparity map

35

30

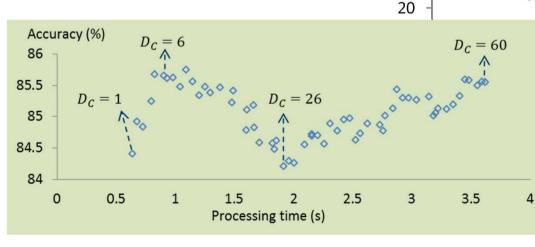
25

PatchMatch stereo [Bleyer et al., BMVC11]

3D reconstruction

Profile of pre-filtered per-pixel likelihood

Histogram-based prefiltering [Min et al., ICCV11]

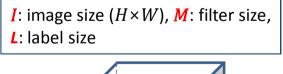


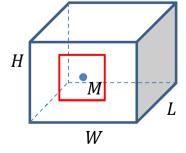
O(I*M*L/S) !! 15 20 25 30 35 40 45 50 55 Disparity hypothesis

I: image size $(H \times W)$, *M*: filter size, *L*: label size

But, the cost is still huge: New approach?

- Computational complexity of local labeling optimization
 - Brute force approach: O(IML)
 - CostFilter (CVPR 2011, PAMI 2013): **0**(**IL**)
 - PatchMatch (SIGGRAPH 2009, ECCV 2010): O(IMlogL)
 - Histogram-based prefiltering (ICCV 2011): O(IML/10)



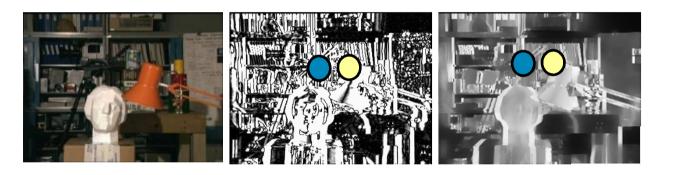


Our goal is to find a bridge to enjoy high "throughput" !!

Photo courtesy: <u>www.pamitc.org/cvpr13/attending.php</u>

Meeting the two is never easy

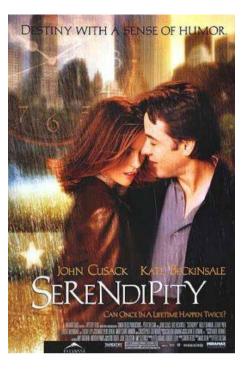
- Significantly different objectives
- Disparate computation pattern
- Disparate memory access pattern



EAF: Highly regular and deterministic computing

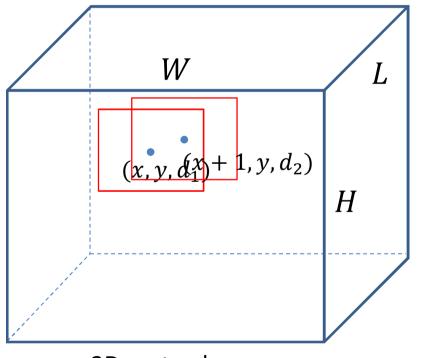
Vs

PM: Random and fragmented data access

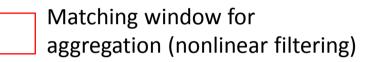


Random Access on Label Space Makes Problem DIFFICULT

- Pixel-wise randomized search of original PatchMatch
 - Fragmental data access on 3D cost volume



3D cost volume



This random access hinders the application of efficient O(1) filtering technique

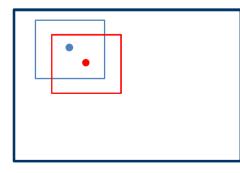
- d_1 for (x, y) and d_2 for (x + 1, y)

O(**IMlogL**)

I: image size (*H*×*W*), *M*: filter size, *L*: label size

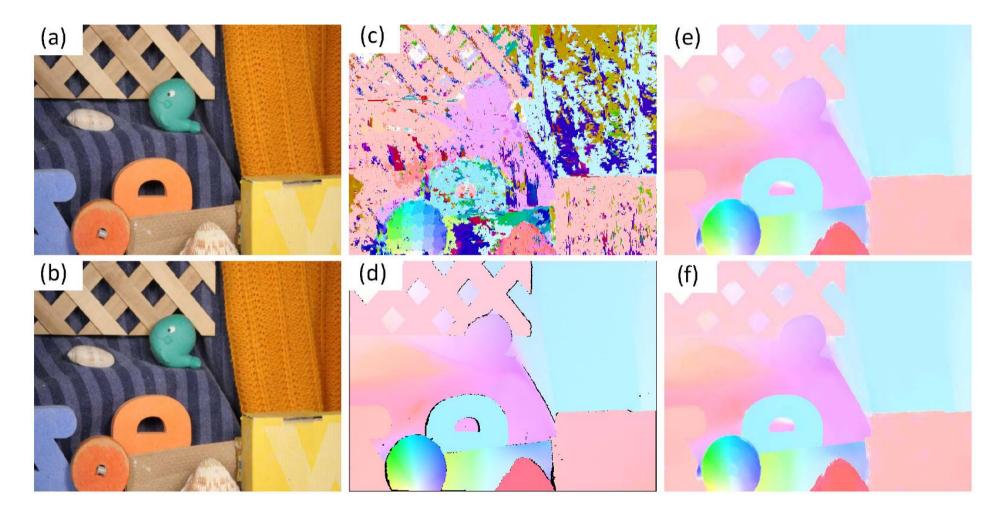
O(1) filtering needs redundancy!

- Redundancy of simultaneously computing a weighted sum for *all* pixels
 - *Guided filter* (ECCV 2010, PAMI 2013): Multiple number of integral sum (box filtering)
 - *Recursive filter of Domain Transform* method (SIGGRAPH 2011): Recursive propagation of aggregated data in causal and non-causal manners
 - O(1) Bilateral Filter on bilateral grid (ECCV 2006): Linear
 Gaussian filtering on high dimensional volume



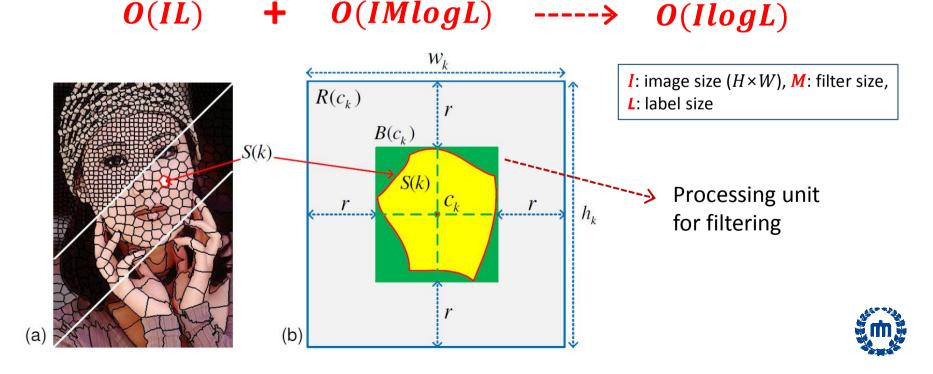
The filtered data of • should be reused for filtering •

We did it: Ours (f) runs 10x faster than CostFilter (e), with even higher accuracy



PatchMatch Filter (PMF)

- Super-pixel based randomized search algorithm
 Collaborative filtering within a single super-pixel
- Efficient filtering + PatchMatch algorithm
 - Collaborative randomized search

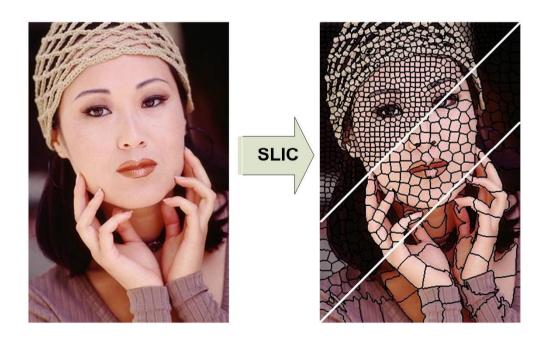


Μ

W

Segments as the bridge

- Labeling solutions are spatially smooth and discontinuities-aligned
 Collaborative label search and propagation
- Extends the propagation range
- The efficiency of EAF comes from high computational redundancy for shared computation reuse



Note)

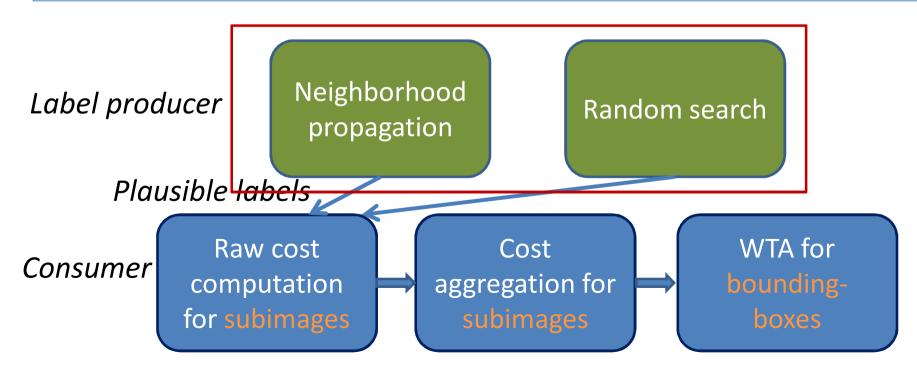
A simple method, dividing an image into non-overlapped rectangular
blocks, is also possible!
→ But, this makes the algorithm being converged much slower!

[Achanta et al. PAMI12]

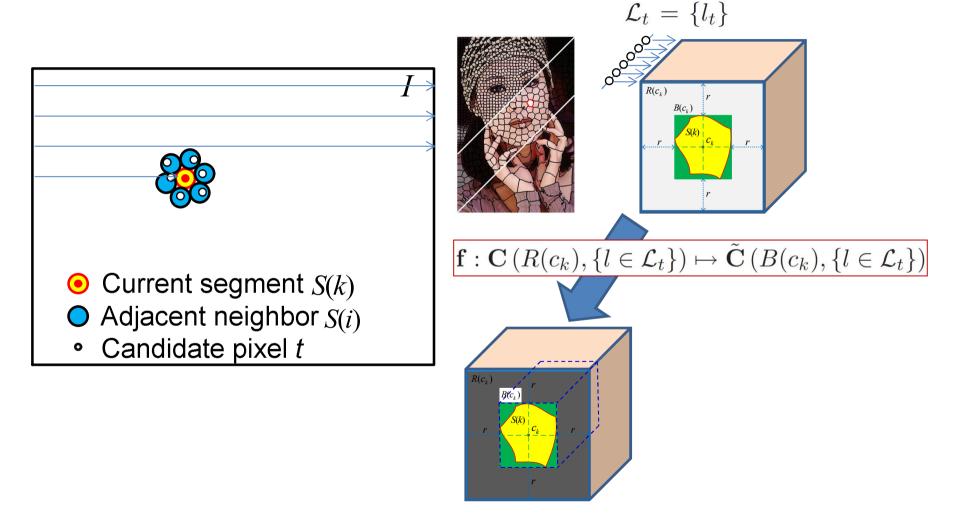
Baseline PMF algorithm: General recipe

- 1. Initial label assignment to each segment
- 2. Process each segment in scan order iteratively
 - For the current segment, evaluate the candidate labels generated from two sources: propagation & random search

Note that the **cost aggregation (filtering)** is done for **each segment** the **label decision (WTA)** is done for **each pixel**



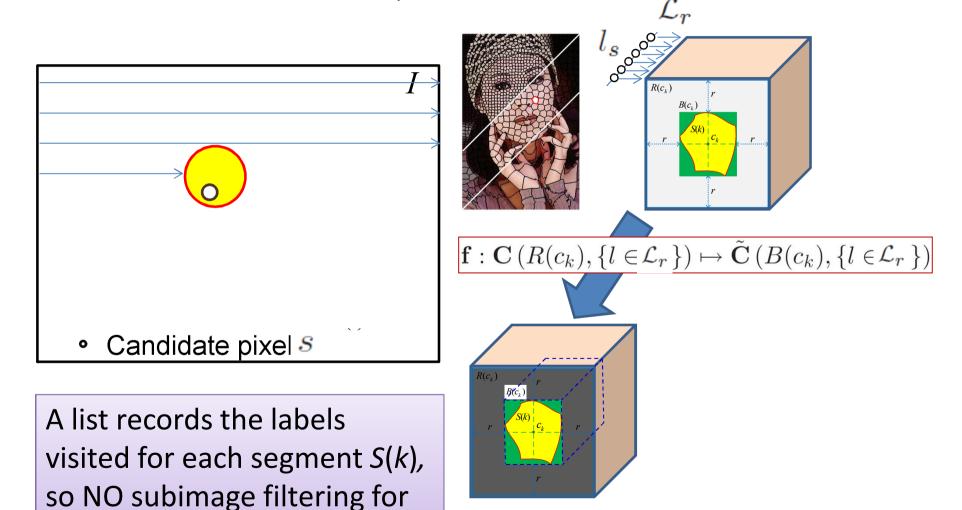
Neighborhood label propagation & evaluation



Random search & evaluation

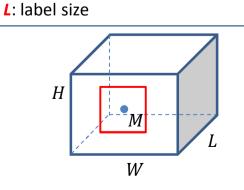
Note that the filtering is done for each segment, but the label decision is done for each pixel

any revisited label.



Complexity Comparison

- Computational complexity of local labeling optimization
 - Brute force approach: **O**(**IML**)
 - CostFilter (CVPR 2011, PAMI 2013): **0**(**IL**)
 - PatchMatch (SIGGRAPH 2009, ECCV 2010): O(IMlogL)
 - Histogram-based prefiltering (ICCV 2011): O(IML/10)
 - PatchMatch Filter (ours): O(IlogL)



I: image size $(H \times W)$, *M*: filter size,

PMF for Stereo – Slanted surface handling

• Label: for each pixel p, find a 3D plane

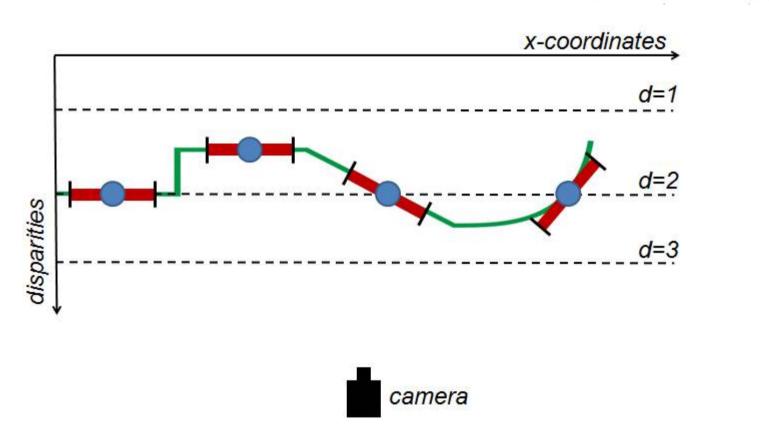


Image courtesy of [Bleyer et al., BMVC11]

 $\mathbf{l}_p = (a_p, b_p, c_p)$

PMF for Stereo – Slanted surface handling

- Label: for each pixel p, find a 3D plane $l_p = (a_p, b_p, c_p)$
- Hypothetical correspondence location (*a*, *a*') $x_{a'} = x_a - d_a = x_a - \mathbf{l}_p \cdot (x_a, y_a, 1)^\top$, and $y_{a'} = y_a$
- Raw matching cost

$$C_{q}(l) = (1 - \beta) \cdot \min\left(\left\|I_{q} - I_{q'}^{\prime}\right\|, \gamma_{1}\right) \\ + \beta \cdot \min\left(\left\|\nabla I_{q} - \nabla I_{q'}^{\prime}\right\|, \gamma_{2}\right)$$

- PMF-based cost aggregation
- Post processing
 - Cross-checking, plane extrapolation for unreliable pixels, weighted median filter

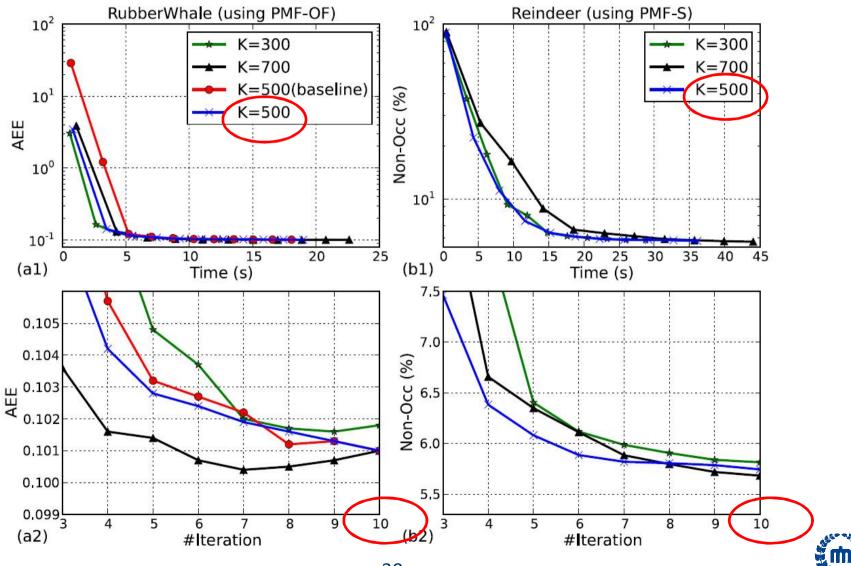
PMF for Optical flow

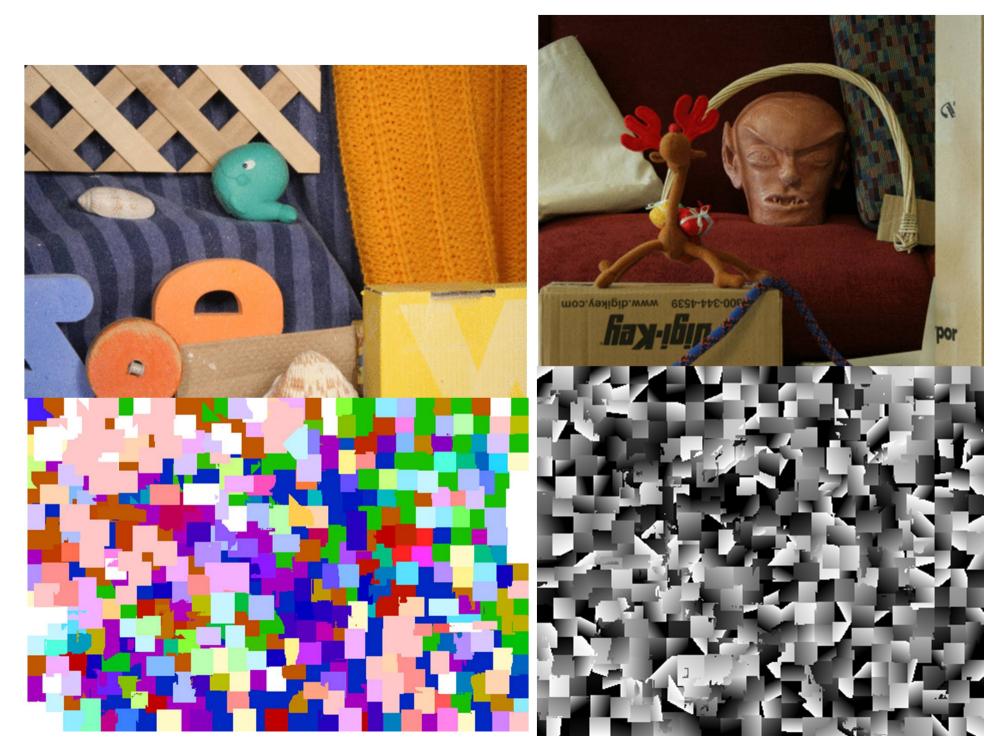
- Label: for each pixel p, find a disp. vector $\mathbf{l}_p = (u, v)$
- For sub-pixel accurate flow, upscaling (*u*,*v*)-dim. by 8
- Hypothetical correspondence location (q, q'=q+(u,v))
- Raw matching cost

 $C_{q}(l) = (1 - \beta) \cdot \min\left(\left\|I_{q} - I_{q'}^{\prime}\right\|, \gamma_{1}\right) \\ + \beta \cdot \min\left(\left\|\nabla I_{q} - \nabla I_{q'}^{\prime}\right\|, \gamma_{2}\right)$

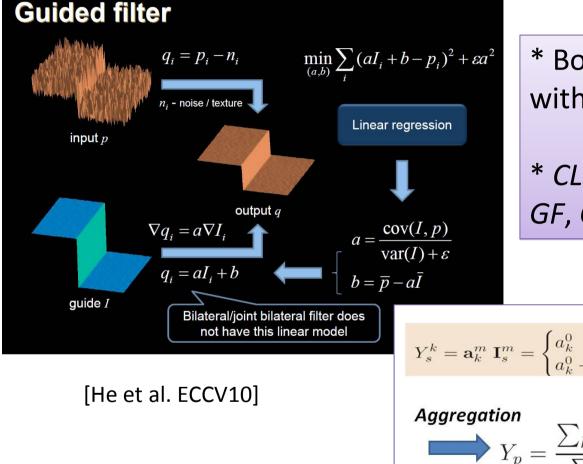
- PMF-based cost aggregation
- Post processing
 - Cross-checking, iterative weighted median filter, smoothing

Convergence and time-accuracy trade-off





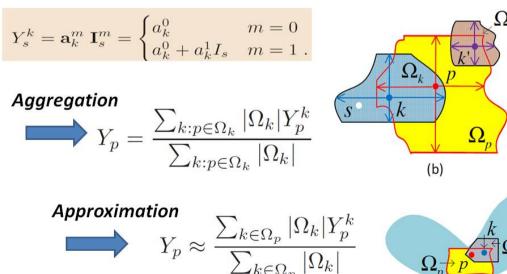
Guided Filter (GF) and Cross-based Local Multipoint Filtering (CLMF)



* Both O(1)-time algorithms with leading EAF performance

* *CLMF-0* is **2-3x** faster than *GF, CLMF-1* gives better quality

[Lu et al. CVPR12]



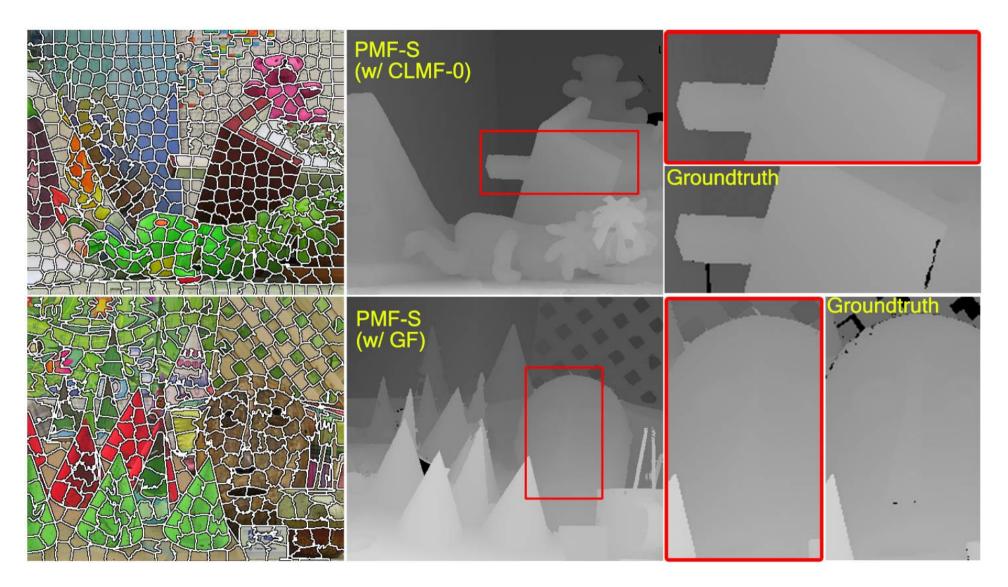
Middlebury stereo benchmark evaluation

Algorithm	Err. thre. $= 1.0$		Err. thre. $= 0.5$	
Aigonunn	Rank	Err. %	Rank	Err. %
PMF-S (w/ CLMF-0)	15	4.04	6	8.67
PMF-S (w/GF)	16	4.06	2	7.69
PatchMatch [7]	18	4.59	8	9.91
PMBP [6]	21	4.46	4	8.77
PMF-C (w/ CLMF-0)	23	5.26	-	-
CostFilter (w/GF) [17]	24	5.55		-
PMF-C (w/GF)	25	5.48	- 1	-

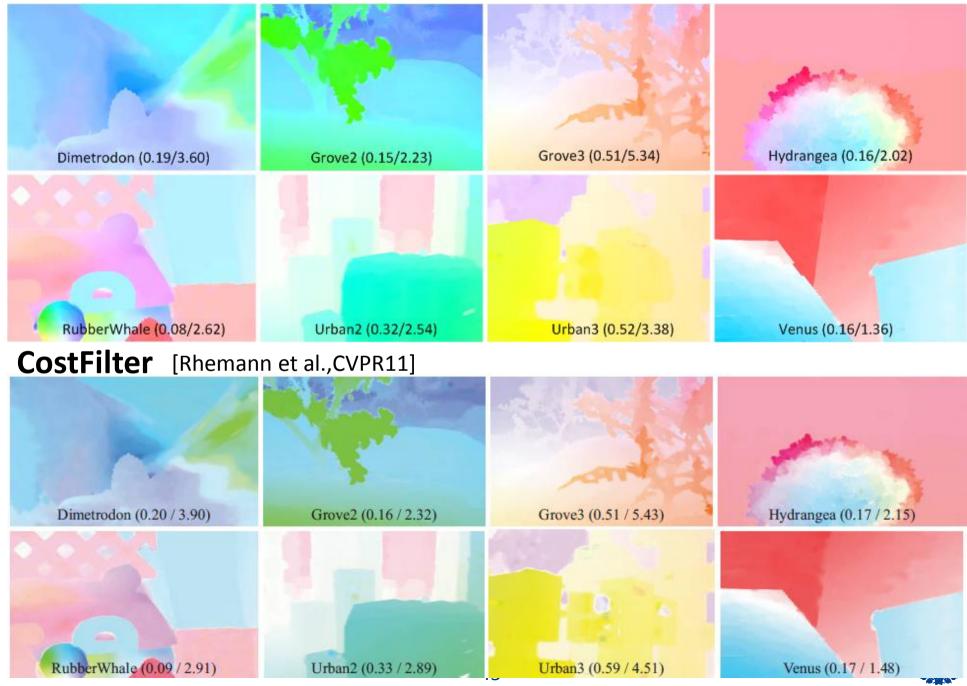
- Improvement of PMF due to implicit regularization by segment-based propagation
- PMF does not sacrifice the matching accuracy (compared to the original PatchMatch), for improving the runtime efficiency!

Algorithm		Teddy		Cones		
Aigonum	nocc	all	disc	nocc	all	disc
PMF-S-GF	4.45_{2}	9.44_2	13.7_{2}	2.89_{1}	8.31 ₂	8.22_{1}
PMBP [6]	5.60_{3}	12.0_{6}	15.5_{3}	3.48_{3}	8.884	9.41_4
PMF-S-CLMF0	4.07_{1}	10.5_{3}	12.1_{1}	2.96_{2}	8.843	8.38_{2}
PatchMatch [7]	5.66_{4}	11.8_{5}	16.5_{4}	3.80_{5}	10.2_{6}	10.2_{5}

- PMF-C runs over 3-7x faster for high-res. stereo images (e.g. 1M pixels) than CostFilter
- PMF-S over 10x faster than PatchMatch Stereo[7]
- In any case, w/ CLMF-0 runs 2-3x than w/ GF



Our PMF



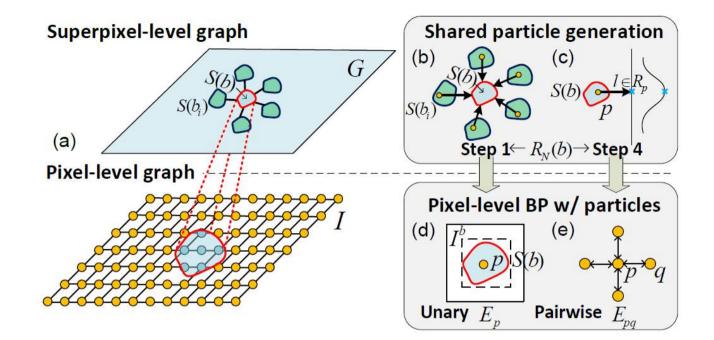
Middlebury optical flow evaluation

Algorithm	µRank	Schefflera	Grove	Teddy	sec
MDP-Flow2 [20]	5.0	(2,2,1)	(9,10,10)	(2,2,2)	342
PMF-GF	19.9	(5,5,8)	(4,4,3)	(3,1,7)	35
MDP-Flow	21.6	(6,8,28)	(21,21,26)	(44,47,43)	188
PMF-CLMF-0	22.5	(15,17,8)	(8,8,2)	(4,2,9)	18
CostFilter [17]	25.0	(4,4,13)	(6,7,4)	(9,18,9)	55*
DPOF [12]	31.2	(6,6,28)	(12,15,8)	(22,18,4)	287

Middlebury optical flow evaluation

Algorithm	µRank	Schefflera	Grove	Teddy	sec
MDP-Flow2 [20]	5.0	(2,2,1)	(9,10,10)	(2,2,2)	342
PMF-GF	19.9	(5,5,8)	(4,4,3)	(3,1,7)	35
MDP-Flow	21.6	(6,8,28)	(21,21,26)	(44,47,43)	188
PMF-CLMF-0	22.5	(15,17,8)	(8,8,2)	(4,2,9)	18
CostFilter [17]	25.0	(4,4,13)	(6,7,4)	(9,18,9)	55*
DPOF [12]	31.2	(6,6,28)	(12,15,8)	(22,18,4)	287

- PMF gives an order of magnitude runtime speedup
- PMF runs even over 30x faster than CostFilter[17] on the same PC



SPM-BP (SPED-UP PATCHMATCH BELIEF PROPAGATION)

• Y. Li, D. Min*, M. S. Brown, M. N. Do, and J. Lu, 'SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs,' IEEE Int. Conf. on Computer Vision (ICCV), Dec. 2015. (oral presentation, acceptance rate < 4.0%, *: corresponding author)

Discrete Pixel-Labeling Optimization on MRF

• Many computer vision tasks can be formulated as a pixel-labeling problem on Markov Random Field (MRF)

Segmentation $l = \{B, G\}$

Denoising l = intensity

Stereo l = d

Optical flow l = (u, v)

$$E = \sum_p E_p(l_p; W) + \sum_p \sum_{q \in \mathcal{N}_p} E_{pq}(l_p, l_q)$$

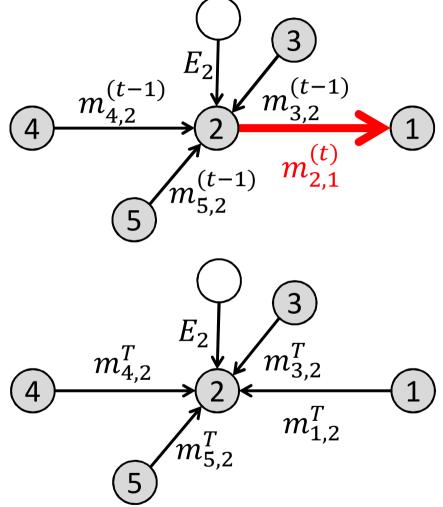
$$p: \text{pixel, } N_p: \text{4 neighbors}$$

- Simple: data term + smoothness term
- Effective: labeling coherence, discontinuity handling
- Optimization: Graph Cut, Belief Propagation, etc.

Belief Propagation (BP)

Iterative process in which neighbouring nodes "talk" to each other:

- Update message between neighboring pixels
- Stop after T iterations, decide the final label by picking the smallest dis-belief



Challenge:

When the label set *L* is huge or densely sampled, BP faces prohibitively high computational challenges.

Particle Belief Propagation (PBP)

[Ihler and McAllester, "Particle Belief Propagation," AISTATS'09]

– Solution:

(1) only store messages for *K* labels (particles)

l(discrete label)

(2) generate new label particles with the MCMC sampling using a Gaussian proposal distribution

$$\underbrace{ }$$

Challenge:

MCMC sampling is still inefficient and slow for continuous label spaces (e.g. stereo with slanted surfaces).

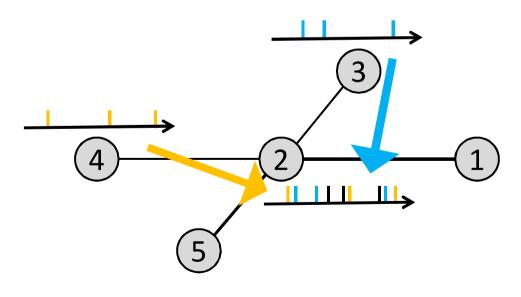
Patch Match Belief Propagation (PMBP)

[Besse et al, "PMBP: PatchMatch Belief Propagation for Correspondence Field Estimation," *IJCV* 2014]

• Solution:

Use Patch Match[Barnes et al. Siggraph'09]'s sampling algorithm – augment PBP with label samples from the neighbours as proposals

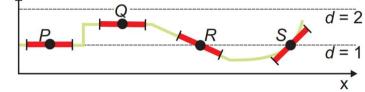
• Orders of magnitude faster than PBP



Patch Match Belief Propagation (PMBP)

- Effectively handles large label spaces in message passing
- Successfully applied to stereo with slanted surface modeling [Bleyer et al., BMVC'11]

Label: 3D plane normal $l = (a_p, b_p, c_p)$



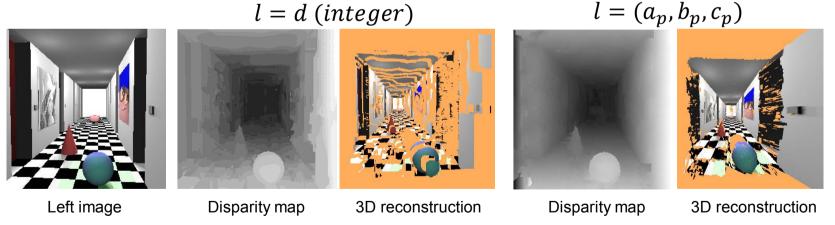


Image courtesy of [Bleyer et al., BMVC'11]

• Also successfully applied to optical flow [Hornáček et al., ECCV'14]

Problem of PMBP

 However, it suffers from a heavy computational load on the data cost computation

$$E = \sum_{p} E_p(l_p; W) + \sum_{p} \sum_{q \in \mathcal{N}_p} E_{pq}(l_p, l_q)$$

• Many works strongly suggest to gather stronger evidence from a local window for the data term

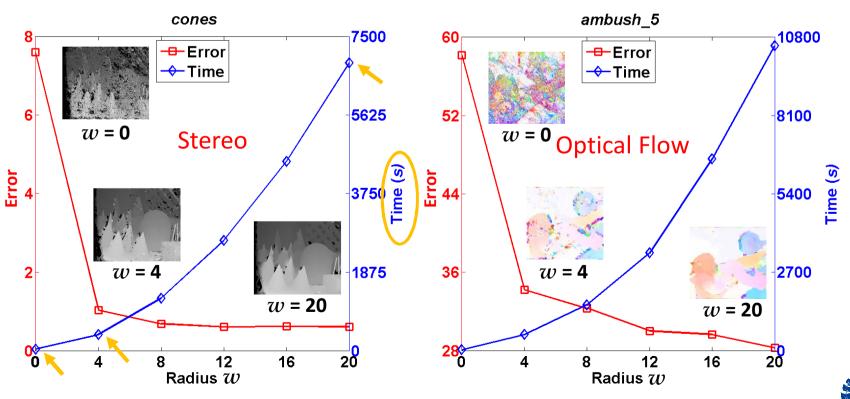
$$E_p(l_p; W) = \sum_{r \in W} \omega_{pr} C_r(l_p)$$

$$F(t_p) = \sum_{r \in W} \omega_{pr} C_r(l_p)$$

Data term is important!

• Better results with larger window sizes (2w+1)^2, but more computational cost!

$$E_p(l_p; W) = \sum_{r \in W} \omega_{pr} C_r(l_p)$$

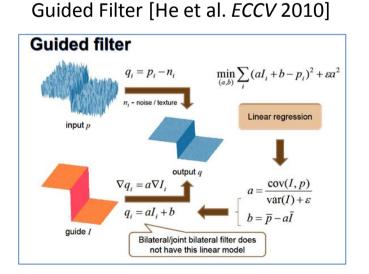


Aggregated data cost computation

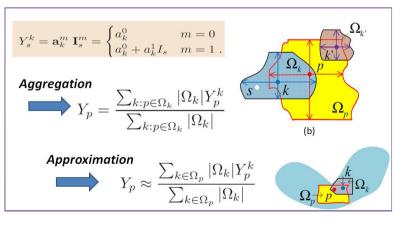
• Cross/joint/bilateral filtering principles

$$E_p(l_p; W) = \sum_{r \in W} \omega_{pr} C_r(l_p)$$

- Local discrete labeling approaches have often used efficient O(1)-time edge-aware filtering (EAF) methods [Rhemann et al., CVPR'11].
 - O(1)-time: No dependency on window size used in EAF



Cross-based Local Multipoint Filtering (CLMF) [Lu et al. CVPR 2012]

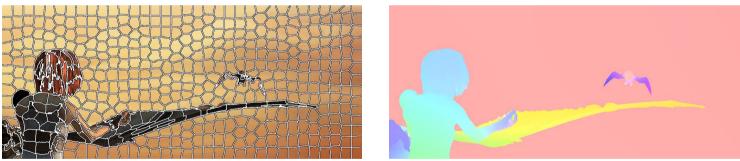


Why does PMBP NOT use O(1) time EAF?

- Particle sampling and data cost computation are performed independently for each pixel
 - → Incompatible with EAF, essentially exploiting redundancy

Observation

Labeling is often spatially smooth away from edges. This allows for shared label proposal and data cost computation for spatially neighboring pixels.



• Our solution

A superpixel based particle sampling belief propagation method, leveraging efficient filter-based cost aggregation

Sped-up Patch Match Belief Propagation (SPM-BP)

Sped-up Patch Match Belief Propagation

Two-Layer Graph Structures in SPM-BP

• Scan Superpixels and Perform :

Neighbourhood Propagation
 Random Search

Related works

Local methods

Pixel based MRF

[Rhemann et al., CVPR'11] [Lu et al., CVPR'13]

Only rely on data term

Superpixel based MRF

[Kappes et al., IJCV'15] [Güney & Geiger, CVPR'15]

Superpixels as graph nodes



Superpixel-based MRF: each superpixel is a node in the graph and all pixels of the superpixel are constrained to have the same label.

Our two-layer graph: superpixel are employed only for particle generation and data cost computation, the **labeling is performed for each pixel independently**.

Local labeling approaches		Data cost computation		
		w/o EAF: O(<i>W</i>)	w/ EAF: <mark>O(1)</mark>	
Label	w/o PatchMatch: O(<i>L</i>)			
space handling	w/ PatchMatch: O(log L)			

Global labeling approaches		Data cost co	mputation
		w/o EAF: O(<i>W</i>)	w/ EAF: <mark>O(1)</mark>
Label	w/o PatchMatch: O(<i>L</i>)		
space handling	w/ PatchMatch: O(log L)		

Local labeling approaches		Data cost co	mputation
		w/o EAF: O(<i>W</i>)	w/ EAF: <mark>O(1)</mark>
Label	w/o PatchMatch:	Adaptive Weighting	Cost Filtering
	O(<i>L</i>)	[PAMI'06]	[CVPR'11]
space	w/ PatchMatch:	PM Stereo	PMF
handling	O(log L)	[BMVC'11]	[CVPR'13]

Global labeling approaches		Data cost co	mputation
		w/o EAF: O(<i>W</i>)	w/ EAF: <mark>O(1)</mark>
Label	w/o PatchMatch: O(<i>L</i>)		
space handling	w/ PatchMatch: O(log L)		

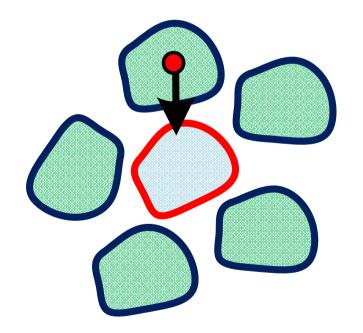
Local labeling approaches		Data cost co	mputation
		w/o EAF: O(<i>W</i>)	w/ EAF: <mark>O(1)</mark>
Label	w/o PatchMatch:	Adaptive Weighting	Cost Filtering
	O(<i>L</i>)	[PAMI'06]	[CVPR'11]
space	w/ PatchMatch:	PM Stereo	PMF
handling	O(log L)	[BMVC'11]	[CVPR'13]

Global labeling approaches		Data cost co	mputation
		w/o EAF: O(<i>W</i>)	w/ EAF: <mark>O(1)</mark>
Label	w/o PatchMatch:	BP	Fully-connected
	O(<i>L</i>)	[PAMI'06]	CRFs [NIPS'11]
space	w/ PatchMatch:	PMBP	?
handling	O(log L)	[IJCV'14]	

Local labeling approaches		Data cost co	mputation
		w/o EAF: O(<i>W</i>)	w/ EAF: <mark>O(1)</mark>
Label	w/o PatchMatch:	Adaptive Weighting	Cost Filtering
	O(<i>L</i>)	[PAMI'06]	[CVPR'11]
space	w/ PatchMatch:	PM Stereo	PMF
handling	O(log L)	[BMVC'11]	[CVPR'13]

Global labeling approaches		Data cost co	mputation
		w/o EAF: O(<i>W</i>)	w/ EAF: <mark>O(1)</mark>
Label	w/o PatchMatch:	BP	Fully-connected
	O(<i>L</i>)	[PAMI'06]	CRFs [NIPS'11]
space	w/ PatchMatch:	PMBP	SPM-BP
handling	O(log L)	[IJCV'14]	[This paper]

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

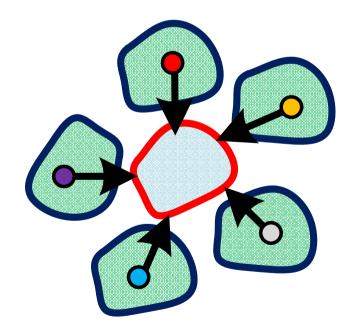


- 1-1) Randomly select one pixel from each neighbouring superpixel
- 1-2) Add the particles at these pixels into the proposal set

Label space

K=3

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

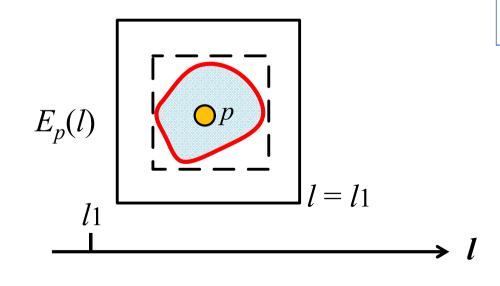


- 1-1) Randomly select one pixel from each neighbouring superpixel
- 1-2) Add the particles at these pixels into the proposal set

K=3

✓ Step 1. Particle propagation

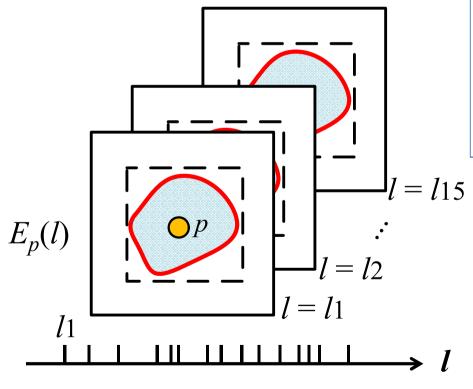
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update



- 2-1) Compute the raw matching data cost of these labels in a slightly enlarged region
- 2-2) Compute the aggregated data cost for each label by performing EAF on the raw matching cost

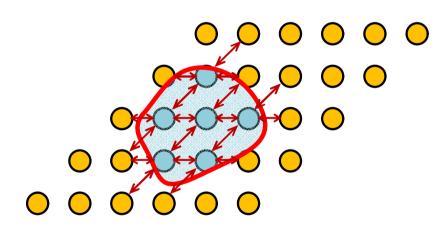
✓ Step 1. Particle propagation

- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update



- 2-1) Compute the raw matching data cost of these labels in a slightly enlarged region
- 2-2) Compute the aggregated data cost for each label by performing EAF on the raw matching cost

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update



3-1) Perform message passing for pixels within the superpixel.

 \bigcirc

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation

top K particles

✓ Step 3. Message update

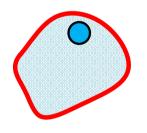
keep K particles

- 3-1) Perform message passing for pixels within the superpixel.
- 3-2) Keep *K* particles with the smallest disbeliefs at each pixel.

SPM-BP: Random Search

✓ Step 1. Particle propagation

- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update



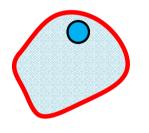
1-1) Randomly select one pixel in the visiting superpixel

$\rightarrow l$

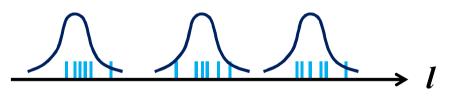
SPM-BP: Random Search

✓ Step 1. Particle propagation

- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update



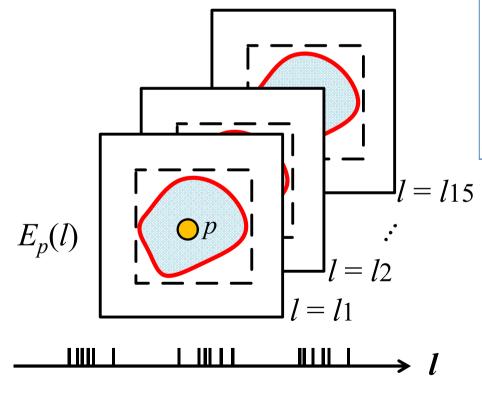
- 1-1) Randomly select one pixel in the visiting superpixel
- 1-2) Generate new proposals around the sampled particles



SPM-BP: Random Search

✓ Step 1. Particle propagation

- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

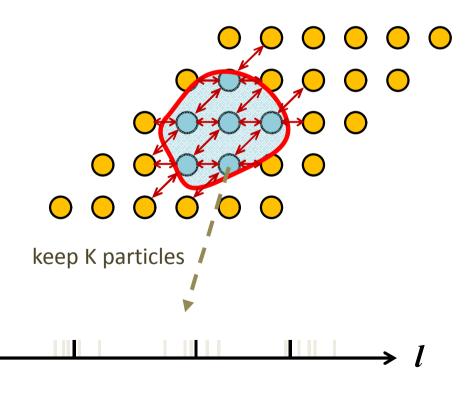


- 2-1) Compute the raw matching data cost of these labels in a slightly enlarged region
- 2-2) Compute the aggregated data cost for each label by performing EAF on the raw matching cost

$$E_p(l_p; W) = \sum_{r \in W} \omega_{pr} C_r(l_p)$$

SPM-BP: Random Search

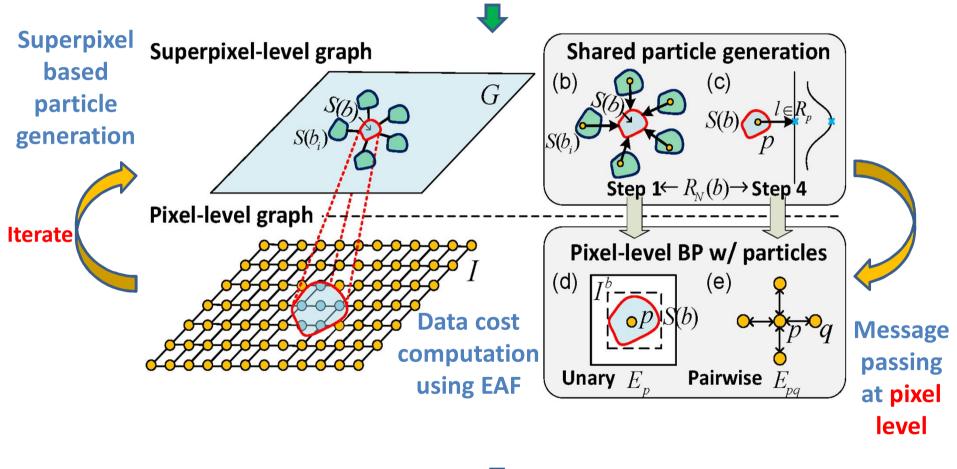
- ✓ Step 1. Particle propagation
 ✓ Step 2. Data cost computation
- ✓ Step 3. Message update



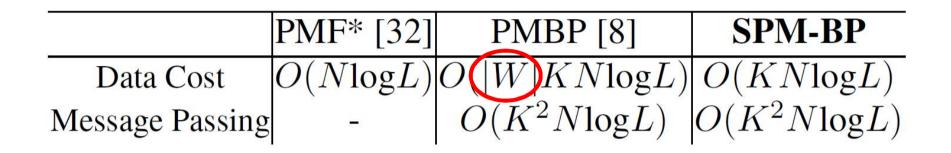
- 3-1) Perform message passing for pixels within the superpixel.
- 3-2) Keep *K* particles with the smallest disbeliefs at each pixel.

SPM-BP: Recap

Random Initialization



Complexity Comparison



|W| – local window size (e.g. 31x31 for stereo)
K – number of particles used (small constant)
N – number of pixels

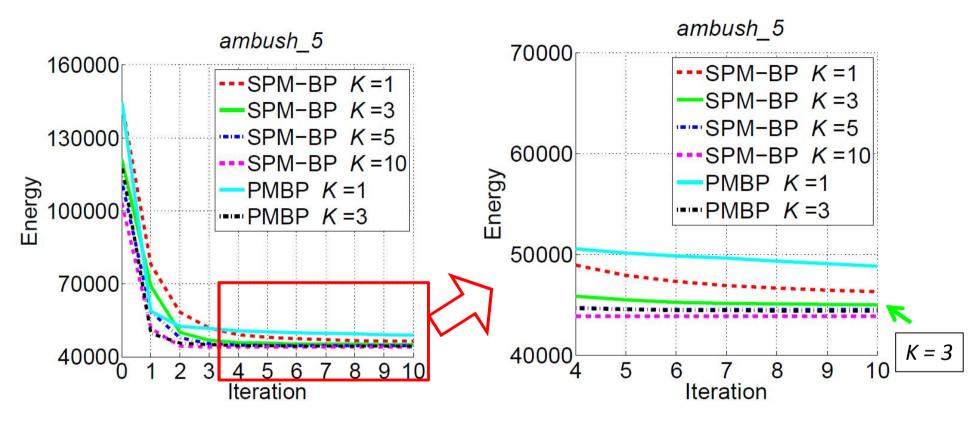
L – label space size (e.g. over 10 million for flow)

*PMF stores only one best particle (K = 1) per pixel node, thus requiring more iterations than the other two methods.

Example Applications

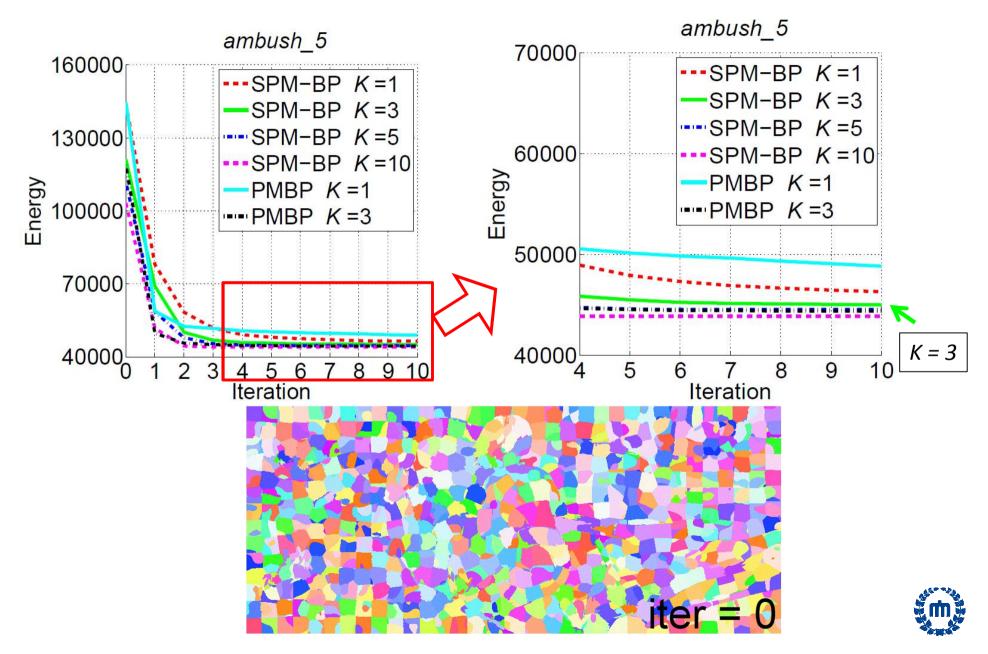
- Stereo with slanted surface supports
 - label: 3D plane normal $l_p = (a_p, b_p, c_p)$
 - Matching features: color + gradient
 - Smoothness term: deviation between two local planes
 - Cross checking + post processing for occlusion
- Large-displacement optical flow
 - **label**: 2D displacement vector $l_p = (u, v)$
 - Matching features: color + Census transform
 - **Smoothness term**: truncated L₂ distance
 - Cross checking + post processing for occlusion

Convergence



#iteration = 5, K = 3

Convergence



Stereo results

Stereo input

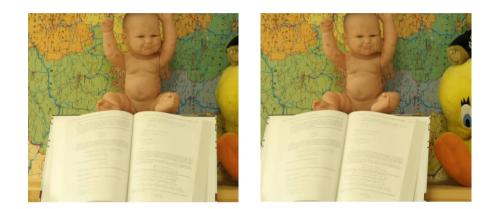
PMF 20 sec.

PMBP *3100 sec.*

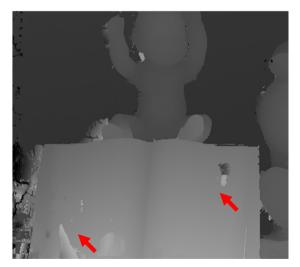
SPM-BP (ours) 30 sec.

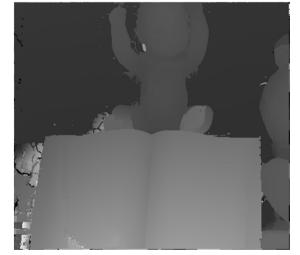
Much faster than PMBP, and much better than PMF for textureless regions

Stereo results



Stereo input



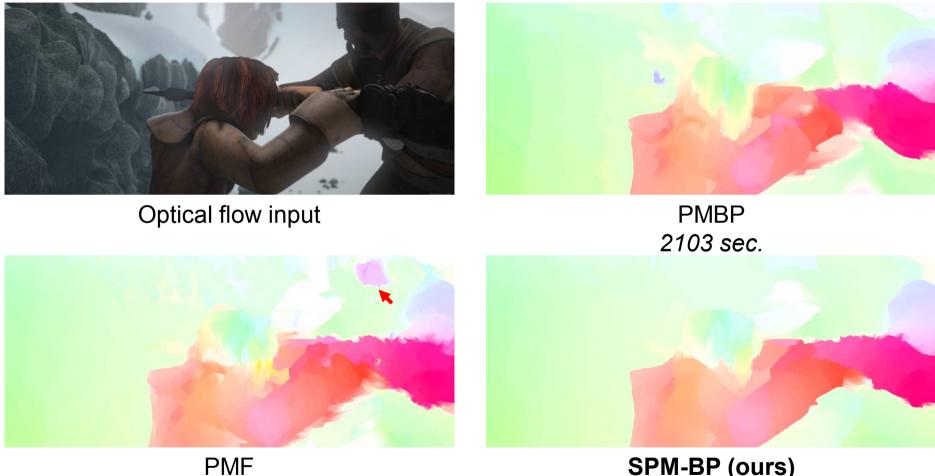


PMF 20 sec.

PMBP 3100 sec.

SPM-BP (ours) 30 sec.

Optical flow results

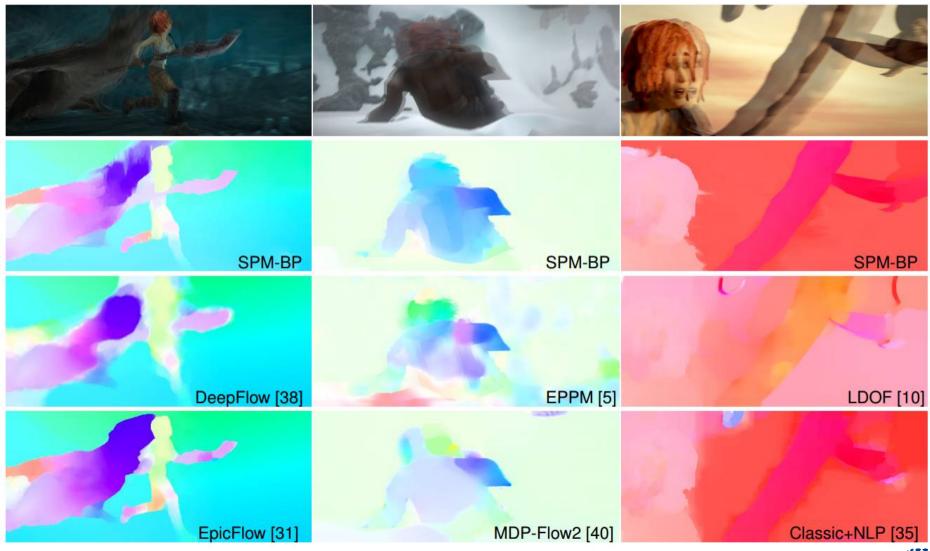


27 sec.

SPM-BP (ours) 42 sec.

Much faster than PMBP, and much better than PMF for textureless regions 81

Optical flow results



Performance Evaluation Middlebury Stereo 2006 Performance

Method Avg. Rank Avg. Error Runtime(s) 34 (GPU) PM-PM [39] 8.2 7.58 8.4 52 (GPU) PM-Huber [17] 7.33 **SPM-BP** 12.130 7.71 PMF [24] 20 12.3 7.69 **PMBP** [7] 19.8 8.77 3100

Middlebury Stereo Performance (Tsukuba/Venus/Teddy/Cones)

Optical Flow Performance on MPI Sintel Benchmark (captured on 16/04/2015)

· · ·		•			
Method	EPE all		EPE all		Runtime
WICHIOU	Clean	Rank	Final	Rank	(Sec)
EpicFlow [30]	4.115	1	6.285	1	17
PH-Flow [41]	4.388	2	7.423	8	800
SPM-BP	5.202	5	7.325	6	42
DeepFlow [36]	5.377	7	7.212	4	19
LocalLayering [33]	5.820	13	8.043	13	-
MDP-Flow2 [38]	5.837	14	8.445	21	754
EPPM [5]	6.494	18	8.377	20	0.95*
S2D-Matching [21]	6.510	19	7.872	10	2000
Classic+NLP [34]	6.731	21	8.291	19	688
Channel-Flow [32]	7.023	24	8.835	26	>10000
LDOF [10]	7.563	25	9.116	28	30
	1	I	1	1	່ ຽວ

Dataset	PMF [25]	PMBP [7]	SPM-BP
Baby2	15.34	16.85	12.82
Books	22.15	27.57	22.52
Bowling2	15.95	15.20	14.35
Flowerpots	24.59	27.97	24.80
Lampshade1	25.02	30.22	23.39
Laundry	26.77	33.90	27.32
Moebius	21.47	25.09	21.09
Reindeer	15.04	21.57	16.02
Mean	20.79	24.79	20.29

Remarks

- A simple formulation, without needing *complex* energy terms nor a separate *initialization*
- Achieved top-tier performance, even when compared to *taskspecific* techniques
- Applied on the full pixel grid, avoiding *coarse-to-fine* steps

Conclusion

- SPM-BP is simple, effective and efficient
- Takes the best computational advantages of
 - efficient edge-aware cost filtering
 - and superpixel-based particle-sampling for message passing
- Offers itself as a general and efficient global optimizer for continuous MRFs
- Future work
 - Robust dense correspondences for cross-scene matching
 - Dealing with *high-order* terms in MRF

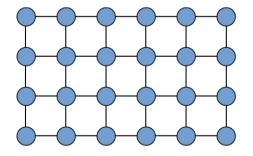
Code is now available online: <u>https://github.com/yu-li/spm-bp</u>

Future work (1/2)

• A better and efficient optimizer for MRF model

- Efficient, global discrete optimization for more flexible energy formulation
- 1. Dealing with **high-dimensional label spaces**
- 2. Using **stronger unary term** with learning based or cost aggregation based approaches
- 3. Solving high-order MRF model

$$E(\mathbf{x}) = \sum_{i} \underbrace{\psi_{u}(x_{i})}_{\text{unary term}} + \sum_{i} \sum_{j>i} \underbrace{\psi_{p}(x_{i}, x_{j})}_{\text{pairwise term}}$$



Future work (2/2)

- Recent papers encouraging further research
 - Sparse2Dense [EpicFlow-CVPR'15]
 - Learning-based regularization [data-driven-3DV'14]
 - Object-level constraint in the regularization [Displets-CVPR'15]

Resources

• ICME'15 tutorial: Visual Correspondences: Taxonomy, Modern Approaches and Ubiquitous Applications

http://www.icme2015.ieee-icme.org/tutorials.php

Project page is now available, including codes, slides, and references! https://sites.google.com/site/icme15tutorial/

- More resources
 - VMA site (papers, demos, code)
 <u>http://publish.illinois.edu/visual-modeling-and-analytics/</u>
 - CVLAB at CNU
 <u>http://cvlab.cnu.ac.kr/</u>

